" AD-R168 868

UNCLRSSIFIED

NAVE PROPAGATION AND DYNAMICS OF
WER_CANBRIDGE MA J H NILLIAMS ET
AFOSR-TR-86-0291 F49620-83-C-0092

RITIGE RS

F/G 20/11

173

NL




ARSI 1) . : .
NEOEN RSN ALAL IR A P i g R I N T NI T T

>

(RS

e

L-h-.A)-A A pAN S
'

N
1 7‘
T
28 fe: ’
o fe
_— t ERY umg '
[ =
"“ TN -
= llis
L2 s pis

MICROCO CHA]T

.

. ! " -.
._f.x. «.'( ('_.r -n"_'-’\i- .




r\‘v: L ABCSE Al LS et B aR B Attt e e

Eﬁ UNCLASSIFIED AD—A 168 868 s

SECLURITY CLASSIFICAT'CN OF TH1S PAGE

REPORT DOCUMENTATION PAGE

ta. REPORAT SECURITY CLASSIFICATION 1b, RESTRICTIVE MARKINGS
Unclassified '
23. SECURITY CLASSIFICATICN AUTHORITY J.CISTRIBUTION/AVAILABILITY OF REPCRT
Approved for Public Release;
20. CECLASS FICATICN.OOWNGRADING SCHECULE Distribution Unlimited.
4 PERFCAMING TRGANIZATICN REPCRT NUMBER.S) 3. MONITORING ORGANIZATION REPORT NUMBERIS)
7~
AFOSR-TR- 33-0291
G2 NAME CF PERFORMING CRGANIZATION b. DFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

It appiicable: FOS p\
i WEA A / N A

Sc. ADCRESS City, sState znag /P Coae: 75. ADDRESS rCity.y.itau and ZIP Code)

P QO Box 260, MIT BRANCH Line AFRB D30 -4 4
COBRIDGE, MY 02139 Bolls d L-a44y

3a. NAME SF FUNOING.SPCNSQRING 8o. OFF!CE SYMBOL |9. PRCCUREMENT (NSTAUMENT 'DENTIFICATION NUMBER
cacanizaticn AR FORCE f appiicadie;
CFFICE OF SCIENTIFIC RESEARGH | AFOSR/NA F49620-85-C-0092
. 3¢c. ADCRESS .ty dtaw anag JJ/P Code 10. SOURCE 2F FILNDING NOS.
e . . PROGRAM | PROLECT | TASK IoNCAK WNIT
BCLLING AF3, DC 20332 ELEMENT NO. vo. f NOL L Ne

Y1 T TLE Inciuge Secunity Casstficaiom WAV PRCPAGATION AND 61102F ‘ 2307 ' 3l "\{ . ,]\" 1 \ /‘::J
DYNAMICS OF LATTICE STRUCTURES {UNCLASSIFIED) : | N )

12. PEASCNAL ALT~CRS)
g JNES Ho WILLIANMS, JR, FREDDIE C. ENG and SAMSON S, LEE
12a. TYPE 3F REPCRT 13p. T'ME ZZVERED 14 DATE OF REPORT (¥, Mo., Dav, 1S5. PAGE JCTUNT
AN UAL From 1 _dpr §5 vo3U Apr8di 84 Mav 01 MRS

8. SUPPLIMENTARY NOTATION

17 Z23SAT ZOZES 13. SUBJECT TERMS Continue on *eterse if necessarv ana identify Sy 8ioca rumbder;
=83 3RCLP sLa 3R WAVE PROPAGATION PERIODIC STRUCTURES

LATTICE STRUCTURES LARGE sPACE STRUCTURES |

19 A3ST AT untiage an severse L aecessary snd Jdenlitt 3y dUCR tkmber

Ce anihotioa o dhe traasier oty i bod o the saaabeeds oF s peatiaenion and aiiration

Drsesedic strctires i introducod draloes of G oonesfimensienal peidaothreebas i Laticy
Srnetuee ard o Sreestimensiomnt teteabedral diess dee chen ta lusteate e zeaciod arproad in

apniing tie trenefer mairiy metivods T additon, aonumerical exaaple is 2bven,

Fhe frequeney response Dections for specitic Tocations i o onesdimensional ted due to an
e ion ol w carticukar fovaiiea are oitaaed using g basic Banmwage conputer provrann ihe
Fanonnes L ane bicaion ot rod dee e spadse exeitation, aosauare pubac escitation sl

Erianeniar prise ovitaten e sccond focating i dis o oiained,

. | OTIC_FILE COPY 6 6 10 124

[|

- :
123 Zi37AL7 It A, A A2 T T agSTaELCT St MAGTALCT SEZLAR T I ai3F SATISN '
| I

e ozl oa ———— T - e - - I N R N, : {
LMIZUASS T2 LNl W TEZ ONL 3AaME aS 3pT L DT T L5ESS ! WL !
1

- - - R - Ik} - - 1
N33 w2 IR ILIRINE 50 NI s TLml (233 TR NLEe 3 e L T 1
’ T liede - ’ |

.

{

'

i




ACKNOWLEDGMENTS

research.

ALR FORCE OFv~ % nr oy
NOTLOZ po waee o
Thtz. - .
Bpp: . - v tend s
Dict- - BRI

MATTURY > .

Chief, Twelnieal Infereation Division

ENTIFIC PESEARCR (APSC)

vl s

This Jeocument was prepared under th2 spensership ot toe My Force,
NVeither the US Government nor any perscn acting on behals of the US

Governmel.t assumes anyv liability resulting from the use of the infor-

-
s

R
2

1
La

notlce i3 intended to cover

s

maticn contained 1a this docunent.

P P R S L )
WPV Wi P, iy U, RSV DRy Y

k Anthony K. Amos) is gratefully acknowledged for its support of this wQYALy,
. 3 g

The Air Force Office of Scientific Research (Project Monitor, Dr. -

-y
-~
4
‘e
"
<

)
o el

W




‘\'\".‘\‘(‘-'(‘("-"-‘f.*’.r\'r.-.'.7.1'77.-,‘9’_7',-" R oSl et AR ANICaAG i ai AN e s bl ool udh gl o et
R SN N G AR e M E ath . gl o

TABLE OF CONTENTS

X B

L ACKNOWLEDGMENTS .cveonerisraccenccssssnnes
TABLE OF CONTENTS i cess s mnesns s sns senssamassscssons

Transfer MAtriCes ... ...t irerecicsstssnsntasesesessans senscsncsssnsanesa sess sees
o Uses of Transfer MAtHCes ... vt ni s s sssscnssessas st v ssts s cnsesssensn s
APPLICATION OF THE TRANSFER MATRIX METHOD TO AN
@ SIAte VECLOES ....oooiinriiiirininis it et sessess et sas sem s ensssne semsss sas s ana sens
Transfer MALHCES...... ... reie e secseessaesesesetrssrnansansesensesnsesns
Uses f the Transfer MatriCes ... sieseesreseesenemiessnesesnnes
® APPLICATION CF THE TRANSFER MATRIX METHCD TO A 3.8AY
State Vectars ........cc.cuvemverunces
® Transfer MAtHCeS ...t s e e e ses s sneane
Uses of the Transfer Matrices .. ... ..
APPLICATION OF THE TRANSFER MATRIX METHOD TO A
SLatE VOCIOS ..ottt seer e e er e

Bt 113 € S 11T S (4 2 TR OO UTURORRTRUURTORNt

L\.".";\’.\ A e e e g N N T e e e e
A A o NN, e bt S et W A VRN RN .1.L.‘-."“:l.l e -

......




WWW"“}?}?}?*); TR AT AT AR

. c T et e tan,

.‘-:""’"1

Uses of the Transfer Matrices................... 34

()

NUMERICAL EXAMPLE oottt eee et omssos st s sar s s s o 35

CONCLUSIONS AND RECOMMENDATIONS weeeeeeesceseerenres v venenssensemsenmseneens 41

THS S RN

REFERENCES oo oeeeeeeceesen e vensseestasen ves sos sova s sessos stases sessasa sos s sensetsens ssssesaeastn i seassss sene 43

o

TABLES ooooveeeeeeeeseesees s sess v e e e ems arms e es anesen e oensoeeeemsraenesers et o0t st sessrases sessessesses s aen 44

FIGURES ooeeeeeeteeeesreeveesvavessas semaoeseveses sasant susaorswen sesasesns sessses sasaes sus 1ot senm sasaemens asseenssssssssens 46 -

APPENDIX A

’ PROPAGATION CONST ANTS AS APPLIED TO WAVE PROPAGATION
IN PERIODIC STRUCTURES woovmeeeeeoevrse e reseseeevesssrossmerssssse e ssvsssmmseossmsensnne 09
APPENDIX B
. TRANSFER MATRICES FOR LONGITUDINAL VIBRATION IN AN
ELASTIC ROD WITH DISTRIBUTED MASS cccooeccomsossrmssssrsseesssmsesssssseense 1
_ APPENDIX C
-

TRANSFER MATRIX FOR LONGITUDINAL VIBRATION IN AN ELASTIC

ROD WITH DISTRIBUTED MASS AND DAMPING wcovereeevveoreveeosseeesronemssmesnen 11
APPENDIX D

TRANSFER MATRIX FOR FLEXURAL VIBRATION IN AN ELASTIC BAR

INCLUDING THE EFFECT OF SHEAR DEFLECTION AND ROTARY

w
[$8

r APPENDIX E

TRANSFER MATRIX FOR LONGITUDINAL AND FLEXURAL VISRATION
» IN AN ELASTIC BAR WITH DISTRIBUTED MASS AND ROTARY
INERTIA oottt sees e eoe st e st s ree st 2
APPENDIX F

r FRECUENCY RESTONSE AND IMPULSE RESPONSE FUNCTIONS FOR

-
~ - Cppat v e <\ . . - . i)
ONGITULINALYVIZIRATION 1N AN ZLASTIC ROD it s

VIPENDIC S




TRANSFER MATRICES FOR WAVE PROPAGATION IN A 3-BAY

PLANAR LATTICE STRUCTURE ettt st s isesss s s sisssas st ot srsssnone

APPENDIX H

FREQUENCY RESPONSE FUNCTIONS FOR A 3-BAY PLANAR LATTICE

APPENDIX 1

TRANSFER MATRICES FOR 3-D WAVE PROPAGATION IN A
TETRAHEDRAL TRUSS e vereeccnvsseissnssnssinins

APPENDIX J

LIST OF COMPUTER PROGRAM ...cuoncitienmensissssesmrasssnns s ssssassas ssnsssnass ans

APPENDIX K

SOME PROPERTIES OF TRANSFER MATRICES o enssrsiaas

APPENDIX L

NON-DIMENSIONALIZED FORMS FOR TRANSFER MATRICES OF A

3-BAY PLANAR LATTICE STRUCTURE ..o cesrrsrnsnnsennntnns s s sssessssnsrssanssnsns

1i2

131

144

188

192

204




(W WA WY

-

Table

G

-6-

LIST OF TABLES

Page
Tabulated Values of the Natural Frequendes of a
Six Segment Rod. (Refer t0 Fig. 19) cooverricaceren 34
Computed Values of the Determinant of Tramsfer
matrix for Timoshenko Beam for Various Values
of (2? wsing Double and Single
PrECISICNS covvveveevveesresesssssnessscassessansesssmssssssssssssssssss 5O
Computer Listing of Program DET1 BAS ............ 198
Computer Listing of Program DET2 BAS ............ 199
Camputed Values of the Determinant of Transfer

Matrices for Uniform Rod and Timeshenko Beam

for Various Frequendes of Vitration.........cocreee 201

.........




) o

......

LIST OF FIGURES

1 A simple periodiC STUCTUTE. ... iemresssessassssansssosssasesssassonsanss 46
2 A compound periodic STUCtUTL. ... ...cocevveiviiececveemene e 47

3 An elastic rod of length 2¢ with distributed

4 An elastic rod with distributed mass and

sinusoidal axial force excitationat paint C ................... 49
5 Internai forces at the loaded ANt C ...ouveueuusversssnsrsnsssesrsnseans 50
6  An elastic rod of length 6¢ with distributed
7 Sign convention for longitudinal vibration

iN AN lASHE 1O ... irre e ceesessonnstnesesessesaescrrass ssasassasssss ssssnssesssasss 52

8 An elastic rod loaded by a sinusoical
axial fOrce @t POINT E .ocerucnervesnesnscssensesssrassessasssossssanssnsassssnsens 53

9 A 3-bay planar 1attics SITUCTUTE ......cruemsueermmensecsesescessessssernssnes 54

10 Sign comvention for the longitudinal and
flexural vibration in @ Timoshenko Beam. ... vuseresre e ceesenene 55

11 A planar structure sectioned into
constituent parts which make up the
trarsfer marices X and Xj e cvermnunsiniectesmensessesassoseesens

(92 )
(o))

12 A 3-pay planar structure sectioned into
Casic pericdic units and Balf WIS e saines

it
~J

13 Tre 3-tay planar structure icaded bv
SUSOICA] SREAT OTTSS ettt e tee e aesne sar st aesrsasne oo

(3]
(9]

14 A tetrahedral truss with repeating Units ...ooooovvcvonmmsscere 59 S

15 Sign convention fcr the forces and
displacements in a connecting bar of a o~
tetrahedral truss, expressed in local cocrdinatss e enne.s oV

o
8 el

16 Asegment of the tetrahedral TUSS oo vcrvccire o ecessresinerns Db

P
)

]
K
)

17 Secticninz of de seyremt in Fig. 15 intd
comstittent pats compTising the warsier

(@3]
ro

---------

TN
Bl sl ol B




L S
Tl e ta et e Car e Vala

18

19

20

21

Bl

C1

PPREPR WAL WAL L WY L

......

The tetrahedral truss (I-‘:g 14) sectioned
into four basic rod ...

An elastic rod clamped at the left end and
free at the nght end, lcaded by exdtation

atpant E....

Frequency force response at B due to unit
sinusoidal axial force exdtation at E

Imptﬂscfomcrespmscinmdathuctoa

positive unit n'npulsc force at E (R:fex to

Fig.19) .. vesssnreneseesse

Force resporse at B due to a positive square

pulse excitation at E (Refer 10 Fig. 19) .civivenivnnciscannens

Force response at B due to triangular pulse

excitation at E (Refer to Fig. 19) w.avmiciinnnccnnicrinncenns

An elastdc bar with distributed mass..............

Free body diagram of an element of the bar......ccocniiens

An elastic rod with distributed mass and
damping ...

Free body diagram of an element o the rod..............
A Timoshenko elastic bar with distnibuted mass................

An elemment of the Timoshenko Deam ....vceeeviveveceeeevessenenns

Free body dxagxamd and element of the
Timcshenxo beam... crevsr s st s sr s

An 2lastic bar with distributed reass and
rotary inertia, und-"nn., both c:n;'udmal
and Sexural de crmadon ., .

An elastdc red loaded by a sinusoidal
axial force at section E ..

A 3-bay planar SITUCTUTE ..o veerninveienriseiensenians

Sign conventicn {or foress and displacemens

A pianar structure secticned into
F
corsttutive pars which make uwp the

AT Ao X ANG Uy e e et

Diazmam ot an T uncion e

63

54

65

(Yo
[§s)

111

123

(O}

3

';.’:.‘
S

i

5%

R
%, ¢

.
(J

>~
‘
-”
-
«"
AL

A AL

i




| GS Free body diagram of mermber 11...viinniiinnnssnenenns 127

| J G6 Directicnal relations between gldnx and
local state vectors at locatien 1 .. 128

G7 Directicnal relations between global and
local state Vectors at I0CAHON 1 ... .eceecuusiuscesnsnsensevesessnsssesenses 129

r e S R ¥ s

=

A 3-bay planar structure lcaded with a
sinusoidal shear forces at C and C'u....usessessssunsressssssssss e 141

Forces at paint 10CatoN 1 ..o inince e cetnencassass e ss s sssnsenes 142

i
S

H3  Directional relaticns between global and
local state vectors at 1oCatiaN 17 .. veccsunssesssnennesssssssonsasssnon 142

R Sign convention far the forces and
displacerments in @ CONNECTING BAT ... ccceireiiiennnrninirie s snes 177

I3 A periodic unit of the tetrahedral tTss woocccnncrseneiens 178

o I4  Sectioning of a periodic unit into -
mnstm.em parts wm;:nsmg the transfer e

IS Directional relatiors between global and =
Jocal State vectors at 10CAtAN D vvveveove oo os o smsesnere 280 A

'
.

Forces at 1ocatons A AN Dvioicieii sereninnen e s sesevennn
17 Tewrahedral truss section far MAX Vv veveveeisecsessersnens 292

13 Crientatcn of memicer A F in the gickal

p—r
(€9
(93]

Relaucnshits oetween state vectors in the
giccal corTdinates At I0CAUON Fp i ieiie s snasransneaens

[y
)
4

1i0 Directicnal relaticrs between the local and
k the rotated glotal state vectars at 10U Fy corrreiris 252 "

JOR! Directicnal relations between the motated o
and unrctated giobal state VeCHTS at loCaton Fo weeeeenee 150 L
12 Tetrahedral 1russ secton fOr MamIX Vi e e 127 .
s
il A 2ite md caded Ty a sinuseidal
< Serzar of g cement ormeeented v

. e T .. . R U TV S T SRS PO O - e
e * . . P P P AL DL SR AT AL B AU S U R D : .
x.n;hx v S VPR PRV TN PTG IE TN LI LN R I VS I W IS N IV VN U . R Y




e e MR S Sa A E AN AL A o A N ot e et o o
. LN o R .'_-_-A-.-"uf’-"'t'..":".‘.'.

-10-
CTCSS -SY MITELTC TANSIEr AR «..seveeecssenreesessessesorsrnesess 202

K2 An elastic rod constrained at ane end and
free at the Other ENd ..o iccrieve it erer et et v s e riene 203

R R
s 4‘3_-‘_._.4_.4'4‘..;"“;..)"‘.)‘;; ’




B T S T T T T W T T

CEE el A dah e e A Al Ak Su et tu e e Sl el etk el el et e o

. -
!
INTRODUCTION
A periadic structure is ane which consists of a number of identical substructures, called
pericdic units, coupled together to from the entire structure. There are in general two types of
L. periadic structures - simple periodic structures and compound prriadic structures. A simple periadic
structure is ane which comsists of basic periodic units which cannot be divided further into identical
subunits. Figure 1 shows an example of such a structure. Figure 1 shows a uniform beam
b supported at spécing €. Oscillators are attached at midspan between the supports as shown. The
oscllators are modeled as comsisting of mass (m,), elastic stffress (spring comstant ;) and
damping (dashpot constant ¢,) A compound periodic structure comsists of pericdic units which in
° therselves are composed of identical periodic subunits. Thus a periadic unit in a compound periadic
structure is itself another periadic structure. Figure 2 shows an example of a compound pericdic
structure. Figure 2 shows a uniform beam simply supparted at spacing € where oscillaters are
P equally spaced within the spans as shown.
Periodic structures have been anaiyzed using the concepts of a ‘propagation constant”
(1-3] and also by the "transfer matrix method” [4]. The concept of propagation constants as applied
® to wave propagaticn in periadic structures is reviewed in Appendix A. However, the derivation of
Fropagation constants is very cumbersome, requiring the soluticn of forth - arder partal differental
equatcrns in most cases. Cn the cther hand, due to recent advances in Tamsfer matrices [$5], the
® trans{er matrix methad appears o0 be less curmbersorze. This arprcach pemmits a simpla treatment
o pericdic unis with coroplicated configurations and furthermere, a matrix {ormulaton & .oost
suitatie for periadic structures of dmte total length since the imposidon of boundary conditicns at
| the ends of the structure is straight forward {7].
In this report, an atternpt is mace to utilize the transfer mawwix methad for analvzing
wave proragaucn in pericdic structures. Three examples are gven to ilustrate the general
¢ rrreach. Tae cse of engtudinal vitration and wave prerazation ina d s corsiderad st Thus
L
FEV AT WV R PRV RSN I-‘l b i.l .i.‘. .Vli i FEVS I TRV TR S T W W P el el e
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is fallowed by more complicated problerns which include vibration and wave propagaton in both a e
terd
F two-dimensicnal 3-bay planar lattice structure and a three-dimensicnal tetrahedral truss. N,
."' .\v
Mt
ANALY SIS i
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.-:,--
THE TRANSFER MATRIX METHOD
State Vectors .
L The identification of a state vector is important in applying the tramsfer matrix method o
10 wave propagation and vibration of structures. The state vectcr z at a paint i of an elastic system :
is a column vector, the components of which are the displacerments at the paint and the f
correspending internal forces. L
For example, in the longitudinal vibration of a straight rod, the stata vector z corsists of
components u and N, where u is the longitudinal displacement and N is the axiai farce. As
arother examyle, for the analysis of the fexural vibration of a Timoshenko beam, the state vector
ccmsis's of cormponents w, ¥, A and V where w is the tramsverse displacement, ¢ is the rotation in :
radians of the arosssection, and M and V are the moment and the shear force, respectively. :fj_v.'
In the analvsis of a structure, if the time histcries of the state vecters for specified )
locanons in the structure are known, the vitration chamcteristics, as well as the wave propagatien ","‘.L'
characteristics, can be daterrcined.
Trarsfer Matrices
A transfer matrix relates the state vector at a paint in a struchure 10 the state vecior at
another pant in the same structure. It is an nxn matrix, where n refers to the number of -
Sropenents in the correspending state vectcr. o
ot
\‘:-:
Scme common tramsfer reatricss are derwed in Appendicss B through E. The amsier N
. "\.

matrices Crom lelt o nizht and Srom nizht o lelt, the siznificance of which s explained later inthis

. . . - - - .t a . . - . . - N
N R P e e N e e e T S Y i . . -
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section) for longitudinal vibration in an elastic rod with distributed mass are derived in Appencix B.
The tramsfer matrix for longitudinal vibration in an elastic rod with distributed mass and damping is
derived in Appendix C. The tramsfer matrix for flexural vibration in an elastic beam with
distibuted mass, including the effects of shear deflection and rotary inertia is derived in Appendix D
and the tramsfer matrix for both longitudinal and flexural vibrations in a bar with distributed mass,

including the effects of shear deflection and rotary inertia, is derived in Appendix E.

For example, the transfer matrix for longitudinal vibration in a straight rod relates the

state vectars at the two end points as (refer to Appendix B)

£sind

{u} o= 9 EA © {u} "
N T , sin@ os® | V),
—pfusf 5

and for flexural vibration in 2 Timoshenko beam, the transfer matrix relates the state vectors at the

two end paints as (refer to Appendix D)

Co — Q2
— g €[y =(o—r)c3y)
gy ¢ € €, —TCy
A4 = EJ
. B e @
* EJ FES
Nl (c,—ex3) 2
&, B ]
-~ ha 28 ol
EJ ;EJ L (B‘ )C]
& &
7 (¢c;—Tc3)) T °? ;w
C, =TCy £[cy~(o+)cy) %4
g €, —0T; v .
{ -2

(2

wihere the subseripts R and L dencte the right and left end state vartables faces, respeciively. For

-
M
.

s'e o
[ A |
e

.
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the definitions of the variables used in eqns. (1) and (2), refer to Appendices B and D respectively.

——

Appendix C also shows the general approach for deriving the transfer matrix for
longitudinal vibraticn in an elastic rod with damping. However, since the introduction of damping

+ complicates the transfer matrices considerably, the problem of damping will not be considered here.
Uses of Transfer Matrices

As mentioned previously, a transfer matrix is used to relate the state vectors at two
k spedified paints in a structure. Notice that due to the sign conventions chesen in deriving transfer
matrices, a transfer matrix becomes different when a left end state vector of a particular element is
written in terms of the right end state vector as opposed to when the right end state vector is written

in terms of the left end state vector.

For example, for longitudinal vibration in a straight rod (refer to Appendix B), the

trarsfer matrix fram left to right relates the state vectars at the two ends of the rod as

& sind
{u} cos 0 EA ¢ {u} 3)
N T |_ 5.2 sin8 cos 8 N, 2
od =5

and the transier matrix from right to left relates the state vectors at the two ends as

__f sin?d
fu} s 9 EA 8 |[u N
W), = Lo SR8 oS f N, (%)

8
It can be shown that the tarsfer matrix in egqn. (4) can also be obtained by simply taking the
inverse of the transier matrix in eqn. (3) and vise versa (refer to eqn. (B16)).
Cre of the weful and interesting characteristics of the tansfer matrix method is that

trarsfer matrices can be rultinlizd to form another wansfer matrix which represents a larger secticn

cf a structure. As a simple exarcple, consider the rod of length 2€ as shown in Figure 3. The mod is

.................
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assumed to comsist of two identical elements, each of length €. Using eqn. (3),

_€ sin @
{u} oos 0 EA © {u} (5)
Ny =l_,,sin8 cos8 NJ,
W ==
and
_£ sin @
{u} wos8 EA 8 {u} ’
Avc‘_pwsir;e cos NJ, ()
Substituting eqn. (5) into egn. (6) gives
£ sin# _¢ sin 8
{u} | o EA 8 cos 9 EA © {u} ;
.VC‘_Mw,six;O cos B _szsi:ge cos 8 NJ, )

Since A and C are the left and right end points of a rod of length 2¢, eqn. (7) states
that the tramsfer matrix for longitudinal vibration of a rod of length 2¢ is equal to the product of
two transfer matrices for a rod of length €. To prove the validity of such a statement, first calculate

the product of the two transfer matrices. Sore mathematical manipulations give

¢ sin @ £ sin 9 5 £ sin29
s 9 EA 8 s 9 EA 8 _ cos 29 T EA 29
5 ] = sin 2 )
_M.w:m:)e ccs 9 _ph}su'gSwsa _2“&,,»1;-9 cos 29
&)

Since 8 = fm\/% (refer to Appendix B),

29 = Zem‘\/-*_%—, eqn. {7) <an be obtained by substituting 2¢ {or ¢ in the trans{er mawix in =gn.



(3). Thus, the transfer matrix for longitudinal vibration of a rod of length 2¢€ is indeed equal to the

product of two transfer matrices for a rod of length €.

In fact, the technique of transfer matrix multiplication can be applied to more
complicated structures since the intermediate state vectars can be substituted successively to obtain
the transfer matrix for the entire structure. It is this characteristic which makes the transfer matrix
method a favorable approach in analyzing periadic structures. Thus, transfer matrices can be

combined in such a way that intermediate state vectors can be eliminated.

For a specific problem, the excitation and the boundary conditions must be specified.
When an exdtation is applied to a structure, say at point (or station) p, the state vector becames
discontinucus at p. The problem is solved using the boundary conditions. This is illustrated in the
next paragrarh. For example, comsider the rod shown in Fig. 4. The rod consists of four identical

rod segments of length € and is loaded by a sinusoidal axial force of magnitude N, at paint C.

Now assume that the rod in Fig. 4 is broken at C. Fig. 5 shows the forces at the left
end and the right end of the rod at C. Since displacements are continuous in crassing paint C (that

iS, ug atC =Up at C),

G- Gk B
YJ)Cr sV JCL Y Je

where C, and C, dencte pants just to the right and just to the left of C, respectively.

Let T (¢) be the tramsiar matrix represented by the 2x2 matrices in eqn. (3) when € in

parentheses signifies that T is for the transfer matrix of a rod of length €. At C,,

{:,}CL =T(OT (6) {';}A (19)

Since the rod is assumed to be a continuous member with no impedance mismatch, muitiplying
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T (€) n times is equivalent to replacing € by nf in T'. Thus, eqn. (10) can be rewritten as

)., =reoli),

Using eqn. (11), egn. (9) becomss

u u 0
i), -reofil, < £, @

However, for paint E,

(o, =raofi, o

Cambining eqn. (12) and egn. (13) gives

(), ~reolreofi), <G

), =reot), -reof) :
Nf, STEO W], *TCO, |, (14)

at the boundaries, since the the displacerrents are specified (that is, u = O), eqn. (14) @n be

writlen as

0 0 0
{N}z =T (4£) {‘V}A +T(2¢) {No }c (15)

Egn. (15) can be salved to obtain the internal forces at A and £. In cther wards, the

state vectars at A and E can be ottained by imposing the boundary conditions.
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Since this is steady state vibration, the state vector at intermediate paints in the rod can
be obtained using either ane of the boundary state vectors (8] (that is, the state vectars at A or E).

For example, for paint B,

(] -rof)

@
u u 0
), -rcofi), ol ) @
ard for paint D,
u u 0
(), -roofs), rofs)
or
u u
), -molil, 2
where
__£ sin?d
. ccs 8 EA 8
778 = g Hn8 s

is the trarsfer matrix in egn. (3).

In addition, frequency respomse functiors for cther spedific locatiors in a structure can

be obtained through the use of tramsfer matrices [8]. With the frequency resporse functions xnown,

random vibration can be considerad. Moreover, impulse respense functions can be generated from




.............................

the frequency response functions, whereby time histaries of waves in a structure can be studied. {10] NS

The relationships between transfer matrices and propagation constants in periodic

structures has been investigated in {9]. It has been found that at any particular frequency, the Y

“ propagation constants corresponding to the waves in a structure are equal to the negative natural i

logarithros of the eigenvalues of the transfer matrix relating the state vectors at the two ends of the g
basic element constituting the periodic structure. Since propagation constants give information on
attenuations, wave numbers and phase changes for wave propagation in structures (refer to -
Aprendix A), the wave propagation characteristics can be readily obtained, via the propagation N

constant technique ance the transfer matrix for a periodic unit is derived.
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APPLICATION OF THE TRANSFER MATRIX METHOD TO AN ELASTIC ROD WITH DISTRIBUTED

MASS

Figure 6 shows the rod to be analyzed in this section. The rod has modulus of elasticity

E, mass density p and cross-sectional area A. In addition, the rod is assumed to be made up of six
identical rod segments, each of length ¢; thus there are no impedance mismatches throughout the

length of the rod.
State Vectars

For longitudinal wvibration in a rod, the state vector comsists of a longitudinal

displacement component « and an axial force component N. Figure 7 shows the sign convention to

be used in this analysis. Thus,

(20)

Transfer Matrices

The tramsfer matrices (from left to right and fram nght to left) for longitudinal
vitration in an elastic rod with distributed mass are derived in Appendix B. From egn. (B11), the
tramsfer matrix T which relates the state vector at the right end ‘o the state vecter at the left end of

an elastic rod of length € is given as

¢ sin @
ws9 Ea 9 .
T"_pjw;sins s 9 G
9

and from eqn. (B16), the transfer matrix T~ which relates the state vector at the left end to0 the

state vector at the right end of an elastic rod is given as

..................
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{ sin @

° e os®  EA © )
= sin ® oos 6
o =

where the variables in eqn. (21) and (22) are defined in Appendix C.

Since the rod to be analyzed in this section has a length of 6¢, and since the rod is
assumed to have constant material and geametric properties throughout its length with no

impedance mismatches, it is convenient to divide the rod into six periodic units, with each periadic

unit represented by a rod of length €. Thus egns. (21) and (22) becorme the tramsfer matrices (from

left to right and from right to left) of one periadic unit of the system.
Uses of the Transfer Matrix

With the transfer matrices for ane periadic unit of the rod defined, the state vector for
specific locations of the rod can be obtained. For example, referring to Fig. 6, the state vector at C

going from left to right along the rod is given by

u u
)

or, which is the sarce, going from right to left along the rod,

u —T—IT‘IT"IT—I u AN
v, = N, (23

Since the rod has consiant material and geometric propertes throughout, egns. (23} and
(24) can be simplified to

u u
(o), =raofi) e
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o), =7l
N, TGO W] (26)

where the values in parentheses indicate the appropriate arguments in termms of € in the matrix T.

Notice that if there are impedance mismatches in the rod, no such simplification can be made. For
example, if section AS of the rod is made up of a material with modulus of elasticity 2E instead of
E as for the rest of the rod, eqn. (23) becames

. ok =77, 2

where T represents the transfer matrix for section A8 and is obtained by substituting 2£ for £ in

le matrix T. Notice that eqn. (24) is not affected since section AB is not included.

Damping can also be included in the transfer matrix method. The transfer marrix fram

left to right for longitudinal vibration in an elastic rod with distributed mass and damping is derived

in Arperdix C. Assume that the rod in Figure 6 now has material damping which can be
characterized by a viscous damping constant ¢ and has no impedance mismatches. The state vectar
at C can stil]l be obtained wsing eqn. (23) but with the transfer matrix T defined by eqn. (C 11) of

Aprendix C (instead of eqn. (22)).

The frequency response functions for specific locaticrss in the rod are derived in
Arpencix F. Appendix F also contairs the genemal approach wherebv the problem of foresd
vicration in a rod can be twreated. The rod is assurced to te excited by a sinusoidal axal ferce of

rmagnitude .V, at E as shown in Figure 8. From egn. (F 16),

cos 28

E = -
NHA(w) s 66

(28)

where the sulxcript A denctes the resporse loaticn and the superscript £ denctes the exdtation

iocadon and the subsaript N denctes an axial force resporse. Fram egn. (F22),

N : y -, , -, - - - -
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£ sin8
Fram eqn. (F 23),
’ 2¢ sin 20

s 68 s 28 (30)

HE(w) = =

From egn. (F 24),

®
3¢ sin 38
s 20 |EA 38
Hi(w) = T oos 68 cos 36 (31)
o
From eqn. (F 25),
4€ sin 48
o 29 {EA 40 .
HE (w) = —2 ) s 48 (32)
where the subscript E, stands for the paint just to the left of E. Also, from egns. (F 31), (F 35)
® and (F 36),
4€ sindd
e = EA_48 faq
IHG ((.L’) (2860 \-J)
Y where the subscript u denotes the cisplacersent respornse,
4¢ sindd
EA 48 coso e
Hf (o) = ———— i (3
cos68 2 Sind
W =2
@
and
o
L

RN IR IR RN - N L e e L .
B PR ORI Sk S S . BNV S I RPRPRPERSY S A B AP AR TS Y P TE ALy




[T W T DT T T T Y 'S let ol el Bd B o0 o

. ‘24- '.
2%
4¢_ sin4g e
EA 48 cos26 e
HE(w) = —=—=— o (35) <
cosb0 5 p.2 SIN26 N
’ 2t =50
where the subscript £ stands for the paint just to the right of E. o
N
.-‘,,_.
The impulse resporse function at B is also generated in Appendix F. Due to the simple o
[ ] s
nature of Hf(w), the impulse respomse function is obtained in closed form. From eqn. (F 44), the o
impulse response for the farce at B is given as :f.
- . L
» W50 =33 (- -3+20000V 2] - dr (s +29006V/ £ -
£ = _
| - «(7+24k )e\/%]—ﬁ[: —9+24k )e\/!;-]
E
J +r (15+24k )e\/_%]w{r ~(17 424k )e‘\/%] e
L +t —(19+24Ic)€\/—§]+ﬁt—(21 +24k)e\/_£_5-]} s
(36)
L. For an impulse exdtation at E, eqn. (36) gives the time-history of the response to be
expected at B. Two pants are of particular interest here. First, the fracticn -;— in front of the
summation sign signifies that the amplitudes of the respomses at B with respect to time is always one *
° half of a delta function. This is expected because, due to symmetry in the rod, the axial force o~
exatation is split up into two equal and oppcsite going waves traveling along the rod. Secord,
aotice that the term £ i_—has the unit of time. In fact, it represents the Sme required for the
® axiai wave 10 tmavel a distance ¢ aicng the rod. I
| In acditicn, at any particular frequency, the propagaticn constant can oe obtained as the .
negative logarithms of the eigen values of tramsfer matrix T. Since 7 is a 2x2 matrix, there is only .
. -~
cne pair of equal and opposite propagaticn constants, correspanding to two oppesite and identical
waves as noted earlier [5].
w
‘ .
~




APPLICATION OF THE TRANSFER MATRIX METHOD TO A 3-BAY PLANAR LATTICE STRUCTURE
Figure 9 shows the 3-bay planar latuce structure to be amalyzed in this section. For gt
simplicity, assume that the cross-sectional dimensions in the bars are small compared with the ‘_l.::::
lengths, and that the structure is made up of identical borizontal and vertical bar elements
throughout. Furthermore, the Timeshenko beam model is used for the bars such that the effects of 2,
shear deflection and rotary inertia are included in the analysis. L':;;',';
State Vectar ot
Recall that the vibration and wave propagation in a structure are characterized by a .
state vecter 2. In the case of the planar structure shown in Figure 9, for each bar, t: = state vecter z R
comsists of three displacerment component and three intermal force components. The three

displacement components are 4, w and U, where u is the longitudinal displacement, w is the
tramsverse displacement and ¢ is the rotation of the crass-section. The threc force components are
M,V and N, where M is the moment, V is the shear farce and N is the axial force. Figure 10
shows the sign convention for the forces and the displacements. Thus

: = {;’,} (37) o
where d is the displacement vector and p is the force vectar such that -

uy
d = {—w}
Vi

73

and :
p= {v 5
N
In amalyzing the structure shown in Figure 9, state vectors corresponding to both main
members I and II are neecded to describe the wvitration characleristics of the structure. The reascn j’..\'jl

for this is due to the chace of the transfer matrices and will becorme apparent in the next secton.

Thus, for a pardcular section in the structurs, the state vecter Z of interest is
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d,

_ ldu .
L z= Pu (38)
P
where the subscripts denote member numbers. Notice that Z is used to differentiate the state vector

at a section in a structure from that of z, which represents the state vector at a paint in the

k structure.

Transfer Matrices

k Two trarmsfer matrices are involved here. The first tramsfer matrix X,, involves the
tramsfer of state vectors in two bars, each of length € in main members I and II. For example,

reermbers 12 and 12 together are represented by such a matrix. The second transfer matrix X,

involves the transfer of state vectors across the junctions. The members which join main mermbers 1
and II constitute such a matrix. For example, member 11 comstitutes such a matrix. Figure 11
shows the 3-bay planar structure which has been secdoned into its comstituent parts respensitle for
trarsfer reatrices X, and X,. The subsc*'xpts R and L are used to denote pants which are just to
the right and paints which are just to the left, respectively, of junctions which join main members I
and II.

Tramsfer matrices X, and X, are derived in Appendix G. From egn. (G4),

[cl 0 0 C:
X}=

0 C:C; 0 19,
0 Cy Co O S
[CJ 0 0 C.
and rom egqn (G 28),
1 00
0 00 .
% =l6cii6, Geiic G, 10 (0
G:L.C7'Gy G:(C,~CL'C)Gy 0 1

The variables wed in eqns. (39) and (30), mamely C,C:C,C.G, 6,63 and G,, ar2

Jefmed in Appendix G.
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Uses of the Transfer Matrices

k With transfer matrices X, and X, defined, the transfer matrix T for one pericdic unit of
00,
the planar structure can be obtained. Figure 12 shows the planar structure which has been }:.j:ﬁ
Vs S s N
sectioned into four basic segments, mmdy, ALOO ALALi ARARIB‘_BLLAR, BR BkchCLZB’ and \:.\'

N

% CxCa33Cyr. ApAg1'B/B;1A; and ByBR2C;C,;2By each defne a basic pericdic unit while
AL OO A/ A, defines a left half-unit and CrCr 33C defines a right half-unit.

k Cansider first section Ay Ag 1B, B/1A, in Figure 12. For section 1, - 1;,

d; d,
dll —_ v i2 dll
Pu =X P
Pr )iy Pr Jap-ap

o where X7 is the transfer matrix which includes lengths of ¢/2 in both main members I and II, and

(41)

where 1, and 1; are points just to the left of paints 1 and 1, respectively. Similarly, for secticn

1y ~1x, where 1, and 1, are paints just to the right of paints 1 and 1, respectively,

@
d; d,
dy _ dy
Pu =X Pu (42)
Pr Jig-ia Pr )11y
o and for section 3, — 3;,
dl dl
d!l - 12 dll 1
Pu =4 Pt (43)
) Pr ja,-8; Pt J1g - 15
Substituting egns. (41) and (42) into egn. (43) gives
d d
du =yl 12 dy A
@ P XXX Pu ()
P 31;311 Pi A‘-Ak
Since section A, Az1B, B, 1A, is rerresentative of a periodic unit, the transfer matrix 7 for ane
periodic unit is obtained frcm egn. (44) as
®

......
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T =X!? X, X}? (45)
ﬁ Similarly, the transfer matrix for A, 00'A; A, , denoted by T -2 is given by
T\ =X1U2 X, (46)

and the transfer matrix for CyCp33Cy, denoted by T'2, is given by

T = X,x 47)

Notice that the tramsfer matrices T, T V? and TV? are all transfer matrices which relate state

vectars from left to right. In addition, the order of the transfer matrices on the right hand sides of
eqns. (45), (46) and (47) are important.

After the tramsfer matrices T, TV3, T'? are defined, the state vectors at specific

secticns of the planar structure can be obtained. For example for section C —C

d; d;
dy _ anldn

} Pu =717 P (48)
Prjc<' Pt Jo,-op

As another example, for section 3-3',

d, d,

dll % - dll

Pur =T*TTT Pt (49)
D1 Japean Pr Jor-or

The frequency response functions for spedfic secticns of the planar structure are derived
in Arpendix H. The planar structurs is assurned to be excited by sinusoidal shear forces at C and
C'. In addiion to deriving the frequency resporse functicrs for the planar structurs, Appendix H
also gives the general approach whereby the problem of forced vibraticn in a planar struciure can be

treated. Fram eqn. (H9) and eqn. (H10),

. by bia} Yky kpi~llbs, b
c~C = — :z .’2 n 2 3 k"] <
HA ((D) [b41 b‘2] [k“ k‘z] [bdj b“] (UO)
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sy = _ |bu bz
o Hi % (o) = = [bn' bn]

locations.

From eqn. (H 11) and eqa. (H 12),

From egns. (H 30), (H 32) and (H 31),

as [10]

whers the subscrpt ¢ denctss the espense location

ZXCAten ocaton.

...............................

ky kg |7 by by
[ku ku] bus bu (51)

where the superscripts dencte the excitation location and the subscripts denote the respomse

B biy b | ka kn|™1|by bu
c< = - » . 2
H; ™ (v) [bu bn] [ku k4z] by by (52)
and
€ - by ba| ky ku|"1by b <
Hi™ (o) = [b;x b;Z] [k.l ka| |bo bu 3)

: Gi 0| [b% Y| lky k]l |ba b
c— = U271 Y a4 ca 2
HS (w) T [0 Gz} [bg{ b(‘z’ ka ke by bu

(54)
, G o [bs ba] ks ko]t [om o
€<'(y) = —pvz|Tr O 1 \9n 92} (¥a Zn B
HS (w) T {O Gz] lb:u bn] [kQI k‘Z} b‘3 b“
(3
HE< = -T2 G 0 bt b | lky ko|” bas b
5 0 G |6 b%| [ka ka Dy by
(35}

Tre variatles used in agns (30) through {$6) are defined in Apperdix H.

The irmpulse respense functions can be cbtained by wing the imerse Fourier Transicrm

R2() =:‘; J Hi{we'dw (57)

of imterest and the superscript a cerctes the

L)
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In addition, at any particular frequency, the propagation constants can be found by
o obtaining the negative logarithms of the eigenvalues of the transfer matrix T for one periodic unit of
the structure. Notice that since T is a 12x12 matrix, there are six pairs of opposite identical

propagation constants, as mentioned earlier.
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APPLICATION OF THE TRANSFER MATRIX METHOD TO A TETRAHEDRAL TRUSS

Figure 14 shows a tetrahedral truss which is used in this section. The tetrahedral truss
is assumed to comsist of identical elastic bars with distributed mass and drcular cress sections, each
of length €. Each connecting tar has modulus of elasticity £, mass density p, shear modulus G,
crosssectional area A, second moment of area inertia about the x or z axis J, second moment of
area inertia about the y axis Jr and radius of gyration about the x or z axis i. Furthermoare, the

across-sectional dimemsiors of each bar are assumed to be small compared with its length.
State Vectors

For each connecting bar in the tetrahedral truss shown in Figure 1, the state vector z
consists of six force components and six displacement components. The six force components are
M, M, TV,V,and N, where M, is the moment about the y-axis, M, is the moment about the z-
axs, T is the tarque about the x-axis, V, is the shear force along the z direction, V, is the shear
force along the y direction and N is the axial force. The six displacerment compenents include
u,v,w,d ¢and 8, where u is the longitudinal displacement, v is the lateral displacement in the v
direction, w is the lateral displacement in the z direction and ¢, ¥ and 8 are rotations of the cross

section about the z, y and x axes, respectively. Thus, for each connecting tar,

_ld <
z = {p} (53)

where d is the displacerment vectcr such that

and where p is the force vector such that
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M, :_'"4
® fv;,
P=1v, =]
v, A :
N R
° Figure 15 shows the sign convention for the force and displacement varniables. _0,‘
In the amalysis of the tetrahedral truss, for a particular station (or section), the state :::_
vectors in main members I through IV are needed. The reason for this is due to the chaice of the (
o transfer matrices and will become apparent in the next section. Thus, for each particular station, £
Pt
d, ] ﬁ:f;
dy
du N
[ _ ldw ! =
z P (59) .
P .;:
Pu ..__".
P
\
) where the subscripts I, II, I or TV denctes the member number for which d or p is defined (refer e
to Figure 14). o
Transfer Matrices }:::
®
In the analysis of the tetrahedral truss, three tramsfer matrices, namely, V,V, and V, o
are required. Figure 16 shows a segment of the tetrahedral truss and Figure 17 shows the segment ::_:.
. in Figure 16 which is sectioned alcng planes paraliel fto the vz plane into the substructures e
respensible for transfer matrices V, V., and V3. Referring to Figure I7, the sections are mace by o
Cu’.tmg the }zflajlc unit along plans GA‘ID‘, ERKRFRLR (G' ELKLFLLL) and HBLJCL. The ~::::.
subscripts L and R wsed for paints £, A, D, F,K, L, B and C denote points just left and right of o
-
these paints, respectively. Thus, the first tramsfer matrix V, represents the transfer of state vecters
in rembers which join main members I and 0. For example, members AD and BL each *
LS
. cors:tutes a transfer matrix V;. The secord transfzr matrix V; represents the trarsfer of siate }:.\,
weeiers it four bars, each of iength €2 in main members I through IV together with memeers I
o
.




which connect member I to member II, member III to member II, member I to member IV,

L member I to member IV. Referring to Figure 17, this includes members AxK,,IF,,DxL,,GE,,
Apfi,DrF.,AgE, and DpE,. The third transfer matrix V5 is responsible for the tramsfer of state
tars in four bars, each of length €/2 in members I through IV together with member which
g connect member 11 to member I, member II to member TII, mermber TV to member I and Member

TV 10 member III. Referring to Figure 17, this includes members Kp 8, , FrJ,LxC,, ExH , Fr 8.,

L. FRC[_,ERBL arﬂE’CL.

The transfer matrices V,V, and V, are derived in Appencix I. From egn. (123), the

trarsfer matrix V, is given as

. 1 00 00000 |
0 10 00000
0 01 00000
0 00 10000
Vi =1lo 00 07000 (60)
‘ Gz(C;"CAC{tCl)G:g 0 G;C4C2_161 00700
0 (L)) 000170
{’G4C{1C163 0 G‘Gz—lGI 0 0 0 0 1
From =qn (1 64), the transfer matrix V, is given as
o \
ol 0 0 0 00 0 ¢
0 C, 0 0 0 0 C; 0
0 0 Cs 0 0 C.o o
0 0 0 C C:o 0 0 |
° Y2 =10, 0 D Dy=D.C Ca 0 0 0
0 Ds Ds*D\~C3 Dy 0 €0 0
4 ' D;=D:+Cy p, 0 0 0 C. 0'
LD:*'D:o‘C; D, 0 Dy 0 0o 0 Cs
|
{61)
From egn. (T 52}, the tramsfer matrix V', is given as
e

...........
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( ) £
C, 0 0 0 0 0 0 ¢, 20
® 0 Ci 0 0 0 0 C;o "
0 0 Gy 0 0 C:o o 9
0 0 0 C, C:0 0 O L ;_::
Vs =1g, 0 Ey Ex+Ew+Cj C, 0 0 0 =
0 Ey E,+Es+C3 Ey 0 C.0 , 0 :i
® E, E+E¢+C; E, 0 00 C.0
Es+E +C; E, 0 E, 0 0 0 CA) '
_ (62) 0
The variable used in the transfer matrices in eqns. (60) through (62) are defined in Appendix I. 'f;
) .
Uses of the Transfer Matrices
With transfer matrices V;V, and V, defined, the transfer matrix T for one periodic unit
. of the tetrahedral truss can be obtained. Figwre 18 shows the tetrahedral truss sectioned into four
basic segments. Referring to Figure 18, segment 1 cefines a left half pericdic unit , segment 2 and g
3 each defines a periodic unit and segment 4 defines a right half periadic unit. Following the same j-_I:j:
° procedure wed for the 3-bay planar structure in the last chapter, the tramsfer matrix for the left -
half periodic unit, denoted by T =2, is given as S
TR =V (63) -
® Sirilarly, the transfer matrix for a periodic unit, dencted by T, is given by -
T =VVV, (64)
and the trarsfer matrix ‘or the right half pericdic unit, denoted by T¥2, is given by R
¢ , -
T 2=V, (65) o
NG
3
N
:::-
N




NUMERICAL EXAMPLE

To illustrate the application of the tramsfer matrix method in the amalysis of wave
propagation in periodic structures the case of a one-dimensional elastic rod is investigated. The
frequency response functions for spedfic locations for the longitudinal vibration in an elastic rod are
obtained Based on these results, the impulse respomse function for a location in the rod is
generated, whereby the wawe propagation characteristis for both square pulse excitation and a

triangular pulse excitation in the rod are studied.

Figure 19 shows the rod to be investigated in this example. The rod is assumsd to
comsist of six identical rod elements, each of length ¢, with no impedance mismatches and no

rcaterial damping throughout. The material and gearmetric properties in the rod are given as

try
il

746 x 10°Pa  (108x10%psi)

A= 629 x107°m? (9.75%x107%n%

p=  26Tkz/m’ (01 €bflin)

¢= 025m (10in)

where E is the elastic modulus, A is the cress-sectional area and p is the mass density.

The frequency respomse functons for specific locaticrs in the rod dus to a sinuscidal
axial {oree exatation at point £ have Seen gererated in eqms. (23) through (35). Based on these
resulis, a basic coroputer program, rarmed PROG1IBAS (refer to Appendix 1), is written to cttain
the frequency respomse functions numerically. For demonstration purposes, a plot of the frequency
respense of the force at B due to excitation at E versus frequency is shown in Figure 20. Jumys in
the wvalues of we frequency respomse funcuon in Figure 20 signify rescnance conditions. For
coroparison, the first nine natural frequencies for the rod are tabulated in Tazie 1 {14]. Modss 2.5

arc 3 in Tatlz 1 are not shown in Tig. 20 because the exdtadon pani oocames a nodal paint at
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DAS
such frequendies. However, since PROG1 BAS alculates the frequency resporse function at B at
o discrete frequency intervals, the values for the resporse at resonances are truncated by the program —
3
and do not reach infinity. The impulse force response function at B cue to a unit force exdtation at -
E is generated in eqn. (F44) and is given by .:
-\.~ o
L
WhE@) =3 S (- 8 - 320V E] - i - (s+20000\V/ 2]
t=0
— g - (7+24k)e\/§—] -8 - (9+24k)€\/%]
e .
+ § - (15+z4k)e\/%] + 8 - (17+24k)€‘\/_-§]
+ §t - (19+24k)€\/—§] + §r - (21+24k)e\/f_-]}
[ (66)
Based on eqn. (66), a plot of the impulse force respomse at B versus elapsed time :
intervals is shown in Fig. 21. A time interval of f\/:;i, which is numerically equal t0 4.95 x 10
. .
sec is used. Note that é\/_-g— is the time required for the impulse excitation to travel a distance ¢ e
aiong the rod. Due to symmetry conditians, the impulse excitation is divided into equal and opposite \‘
ing waves. each having magnitude equal to half a Dirac delta function, which explains the o
e g° ving F
ampiitude of the response. ::I’
N
Phvsically. =qn. (36) states that if a unit impulse force is applied at £ at time zero0, a -
. -
foree response of amplitude equal o half a Dirac delta function will be observed after 3(’\/:-5-,
56\/_-1;_5, and s0 en. To understand this further, refer to Fig. 19. At time zere, a wnit irmpulse
L force of positive magmtude is applied at E. Due to symmetry conditians, this force is divided into
two equal and cpposite going waves, each having a magnitude equal to half of the applied
ampiitude. After three time steps of e\/%—. the 'eft-going wave reaches B. Since B is now under \
® -
CormrTossion, it experienass a force of negative magnituce. This explains the Trst response shown in oy
S

..................




Fig. 21. Now, upon reaching B, the left going-wave travels further along the rod until it reaches

® the boundary at A after an additional e\/%. The wave is then reflected at boundary A.
However, since boundary A is fixed, there is no sign change in the wave due to reflection and after
® another time step of f\/fg, it reaches B again, and now B experiences another force of negative
rmagnitude. This explains the response at se\/}g in Fig. 21. Now comsider the right-going wave

® at E£. After two tme steps of 8\/% fram time zero, the right-going wave reaches boundary G
and is refliected. However, since boundary G is a free boundary, the magnitude of the wave changss
fram positve to negative. After ancther five time steps of 6\/%, this negative wave reaches B.

o
Now B experiences a force of negative magnitude. This explains the response at 76\/% in Fig.
21. The negatve wave then travels further along the rod and after e\/g-. it reaches boundary 4

®
ard is reflected. Since boundary A is fixed, there is no change in the sign o the wave due to
refection and after another c’\/-;L. it reaches B and B again experiences a negative force. This

® expiains the respense at 9€\/-E- in Fig. 21. Following the same procecdure, each individual
resperse at 8 as given Sy eqn. (66) can be explained. .

¢ Crce the impulse response iuncticn is cotaired for a particuiar location, the resperse
Gue to cther forms of exdtation can be ottained using the relaticn [10]

- M) = ) 2 (1) d (7) (67)
where 1 (i) is the resporse funcion and x(7) is the exatation funcdon. In addidon, for the
funcuars ,v§ (1) and A (r—), the subscnipt a denctes the type of response (for example, axal

® force), the subscript p denctes the response iocation and the subscrirt g denctes the exdtation
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location.

. For the present case, if the rod is excited by an exdtation function x(7), the response
~¥& (1), can be obtained by substituting ,A7 r) from eqn. (66) into eqn. (67). Because , k% (7) in
eqn. (66) consists of eight Dirac delta functions, each Dirac delta function has to be integrated

®
separately. For example, comsider the term §r — (3+24k )f\/_-g] in eqn. (66). The resporse
~ Y& (1) dee to this function is given by

e p 5

1E) = [ - 32406V 2 - 15 (ds (68)
where the superscript 1 denotes the respemse is due to the first Dirac delta functon in egn. (66).
Using the relation [10]
L
J AT =) f(1) dr =f(T) (69)
where f(7) is any function, egn. (68) becomss
o
i) = (o= G240)eV/ 2] 70)
The same procedure can be applied to the other Dirac delta functions in eqn. (66) to obtain the
° total resporse  v4(r) fom the integral in eqn. (67) as
) = %z {=x [t =3+24k )e\/%} - x[t— (5~24k )f\/-g:] .
“ k-
-t <724k )4?\/_-%-] -x{t- (9*241:)6\/:-,2:]
< —
-x [r—(lS—?;-ik)f\/jf—] +x{r—(17-24k}€\/~%}
x [:—(19-9-24;'()(3\/-;&] + 2= 123006V L);
- (71)
By wing =qn. (71). the response at £ can be obtained. two types of excitadons are
ccmsidered here to illustrate the approach.
- First comsider the rod to be exdted at £ by a square pulse of unit amplitede and
o
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duration 6\/—. Thus, the excitation X (=) is given as <
o
1 0=s1s¢ -% _
Xy(r) = 72 i
1 otherwise 2) Ve
°
If egn. (72) is substituted into egn. (71), the response y y§ (t) is obtained as e
i) =3~ xli- G0e0eV B -x - (5206 2] N
k-o NS
o :
- Xx[f - (7+24k)f‘%_§'] —X1[l - (9+24k )’;‘\/%] .-
+ X[t — (15+24k )e\/%] + X[t - (17+24k)e\/%
+X;[t—(19—v—24k)€\/—£__—] +X,[t— (21+24k)€'\/§]} .
v -
(73)
Figure 22 shows a plot of the first few resporses. With respect to time intervals of f‘\/—E each.
® . : : :
Similarly, if the rod is now excited at E by amangularptﬂseddumﬁmf\/%anda
peak amplitude of unity such that X,(7) is given as ::E::
° *A/E
F; \/-E 0=s+< —5;‘\/.%
X:(7) = (f\/— -1 —\/T £ %stf‘\/% 74)
0 otherwise
L 3 If =gn. (74) is substtuted into eqn. (71) the response ¢ ¥5{r) is gven as
¥y = «.z{ ~ X[ - (3~74k)e\/— dr = (5-24%) c\/_
. - X,[t - ”7+"4k)€\/_£] R CE: 4:':)8\/%]
~1{15+24k )f\/_ + Xyt~ (17+23k )e\/g"-] i
+ X[t —{19+24k)€\/;] “Xft- (21*241:)6\/_-2:]
) (75) 2
Figuwre 23 shows a plot f the frst faw respomses at 3, with respect 10 time intenvals of c'\//%:-
@

. . ST e “. o0
g o o o .\.‘,\'

L T e
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each.
The explanation of the physical ireplicatians of both eqns. (73) and (75) are very similar .
to that of eqn. (66) and thus are not explained further. :
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CONCLUSIONS AND RECOMMENDATIONS

The trarsfer matrix method is observed to be a simple and straightferward approach in
analyzing wave propagation and vibration in pericdic structures. With the recent advances in the
field of transfer matrices, the transfer matrix method becomes even more favorable. The transfer
matrix method permits a simple treatment of periodic units with complicated configurations.
Moreover, a matrix formation is most suitable for periodic structures of finite total length since the
imposition of the boundary condlitians is straightforward as is observed in the analyses given for the
one-dimensional elastic rod and the 3-bay planar lattice structure. Some common properties of
transfer matrices are outlined in Appendix K, which may serve to simply calculations in applying
the transfer matrix method. The transfer matrices for longitudinal vibration in an elastic rod, as
given in egns. (B 11) and (B 16) in Appendix B and the transfer matrix for flexural vibration in a
Timoshenko Beam as given in egn. (D 16) of Appendix D are used in Appendix K to demorstrate

the properties outlined.

In addition, with the aid of computers, the transfer matrix method can te applied with
little difficulty once the transfer matrix for a periadic unit is formulated, as is demcnstrated in the

numerical examgle.

However, there is cne setback in the transfer matrix method. If a periadic saucture to
be analyzad corsists of a large number of repeating periadic units, the numerical applicaticn of the
trarsfer matrix method requizes mmultiplication of a large number of transfer maticss together, the
procuct of which may become enormously large and difficult to handie, even with the aid of a
ccmputer. In addition, if the elements in a transfer matrix are frequency dependent, they become
larger and larger with increasing frequencies. The accuracy of the transfer matrix method may be
significantly reduced due to the operations of large numbers. This is demcnstrated by the
inaccuracies in obtaining the determinant of the tramsfer matrix for flexural wibraticn in a

imoshenko Beam at high frequencies in Appendix X. To accommodate for this, rcn-

- e
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dimersionalized forms of tramsfer matrices should be used. For illustration purposes, Appendix L
shows the derivation of the non-dimensionalized forms for the transfer matrices for a 3-bay planar
lattice structure. Table 2 shows the calculated values of the determinant of the transfer matrix of a
Timoshenko beam (using program DET2.BAS in Appendix K) based on various values of the non-
dimersicnalized parameter {}? obtained in Appendix L wsing both single precsion and double
precision on all variables. It is observed that the value of the determinant is not calculated correctly
to be unity when 2? reaches a value of 4 for single predsion calculations, and a value of 75 for
double precision calculations. Furthermare, the disagreement in the calculated results for single
precision calculations and double precsion calculations again justifies the inaccuracies of the

computed results due to operations of large numbers.

Another alternative is 10 wse Cayley-Hamilton theorem [7] when multiplying tramsfer
matrices. Cayley-Hamilton theorem expards the product of a number of tranmsfer matrices as a
linear combinaticn of n independent analytical functions of the transfer matrix T, where n denotes
the dirension f T. According to the thecrem,
an Ti*T7-/ T/ -T-/

LR
T Eal 3 +b, 3

=l

(76)

where a/s and b;s are constants and K is the number of times transfer matrix T is multiplied to
itself. The constants a,’s and b;s can be cttained by substituting for T the eigenvalues of T in eqn.
(72;. For exarcple, if tamsfer matix T is a 4x4 matrix, and if the four egenvaluss of T (refer o
Aprendix X) are sutsituted successively to egn. (76), four independent equations, with g;5 axd
b;s as the only unknowns, are obtained. By solving these four simultaneous equators, the
unknowts a5 and b,;s can be cetermined. Eqn. (76) can even be applied to obtain T!. The
Cavley-Hamilten thecrem beccmes favoratle when the number of mudtiplication exceeds the

dimersion of the transfer matrix. This is because, accarding to eqn. (76), the highest powerin T is

2 2. independent on the value of k.
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Table 1. Tabulated Values of the Natural Frequencies of a ¥
Six Segment Rod (refer to Figure 19). -
®
Princdpal Modes | Natural Frequ (rad/sec)
w= 2n-1)mw zE n=12
12¢ 0
o
1 533573
2 16007 19
3 26678 65
4 3735011
5 48021 57
6 5869303
7 69364 49
8 8003595
9 90707 41

.
.
.
.-
.
..
AL

-. ‘
A
o
1
R
L

Ll

3
v

, LRI
PAZPE]
N i
.




Table 2. Computed Values of The Determinant of Transfer matrix
for Timoshenko Beam far Various Values
of «f wing Double and Single Precisions.*

Determinant of Transfer Matrix

for Timmshenko Beam
of

Single precision | Double Precision
0 1.000000 1.000000
05 1.000000 1.000001
10 1000015 1000013
15 1000191 1000031
20 1000328 0.999764
25 0.959418 0.999844
30 0998260 1.000488
35 1001465 0999756
40 0990234 1002930
45 0860351 1003906
50 1193359 0.980469
55 0.359375 0.996094
6.0 1283203 1003320
65 4146484 1085938
7 -17.234380 1041992
75 7898438 1023438
80 -95.906250 0.781250
835 287.125000 0625000
90 418250000 0250000
95 360.000000 3.000000

100 | -1380.500000 -1.000000

* Eastic modulus is 746x10"° P, (108x10% psi) , shear modulus is 2.75x10'° P, (40x10% psi),
cross sectional area is 604X107% m? (9375x107%in), second moment of area inerta is
455x1079 in* (1098X107% in*), mrass density is 72kg/m¥(0.1 Ibf/in®, radivs of gyratian is
271x107% m (10838x107! in), ard length in 243x10~! m (9.75 in)
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Fig. 2 A compound periodic structure.
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E,A, p

Fig. 3 An elastic rod of length 2¢ with distributad mass.
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E, A, p

Fig. 4 An eiastic rod with distributed mass and sinusoidal
axial force excitation at point C.
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Fig. 7 Sign convention for longitudinal vibration
in an slastic rod.
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Fig. 8 An elastic rod loaded by a sinuscidal axigl force at Z.
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Fig. 9 A 3-bcy planar lattice structurs.
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Fig. 48 The Tetrahedral truss (Fig 14) sectioned into
four basic segments.
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Fig. 19 An elastic rod clamped at the left end
and free at the right end, loaded by
axternal exitation at point E.
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Fig. 24 Impulse response of force in rod at B duz
to a positive unit impulse force at E (Rafer
to Fig. 19).
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APPENDIX A

PROPAGATION CONSTANTS AS APPLIED TO
THE ANALY SIS OF WAVE PROPAGATION IN

PERIODIC STRUCTURES

The characteristics of wave propagation and vibration in pericdic structures are best
uncerstoad in terms of propagating and non-propagating wave motions. In general, waves can pro-
pagate in some frequency tands and not in others [2]. In cther words, periodic units in periodic

structures behave like band-pass filters, responding very effidently in certain frequency bands only.

Such a characteristic is commonly described by a propagation constant . [12] which is
descrited oy the nature of the periodic unit and the corresponding excitaticn frequency. The har-
monic motion at cne end of a periodic unit is equal to e™ times the motion at the cther end from
which the wawe is travelling. A propagation corstant w can be real, imaginary or complex, and its
value always occurs in positive and negative pairs, which correspond to identical but oppesite going
waves. The real part of uis called the attenuaticn a, and the imaginary part is called the phase
corstant {or wave number) « Purely imaginary propagation constant are known to be assogated

ith waves which propagate energy. whereas purely real propagation constants belong to waves o
n0 energy fow [1]. The frequency bands cf the real part of ware called the propagation zones;
cther frequency tands are called the attenuation zenes. The number of possible propagation con-
stans (and the comrespending waves), for a3 pericdic unit at a particular frequency, is equal to twice
the number of state vectors (or coupling coordinates) between adjacent periocic wnits [1]. Fer
example, for the flexural vibrations of a beam, there are eight propagation constants corresponding
to the four coupling cocrdinates which are, namely, the transverse displacement, the angle of rota-
ton of the cross section, the shear force and the momment. For a particular value of w, the positive-

coing waves, each as a funcicn of x, and of the fon 2]
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W.(x) = 2 A‘el[-—(uﬂna)xlq . ‘ (Al) S

and the negative-gaing waves, each as a function of x, are of the form [2] o

w_(x) = i Bﬂd[d‘(u*Zuv)x!(l . (A2) :\-‘

a-—

o Where A, and B, are constants and W represents the wave parameter of interest (for example,

stress wave in a periodic structure). T
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APPENDIX B
®
TRANSFER MATRICES FOR LONGITUDINAL VIBRATION
IN AN ELASTIC ROD WITH DISTRIBUTED MASS

® In this appendix, the transfer matrices (fram left to right and from right to left) for
longitudinal vibration in an elastic rod with distributed mass are derived using the classical wave
equation for longitudinal vibration in an elastic rod.

e Fig. Bl shows an elastic rod with distributed mass together with the sign convention
adopted for the forces and the displacercents. The rod has modulus of elasticity £, cross-secticnal
area A, mass density p and length €. Furthermare, N (x ,t) represents the internal axial force and

® u (x ,¢) represents the longitudinal displacement in the rod.

Consider a small element of the rod as shown in Fig. B2. Using the momentum prind-
pal,

o

N _ o Fulen)
X PA T o (B1)

@ By the definitions of stress and strain,

N=0A,
e=dulz)
axX
©
ard o = Ee ,
which zive
- AN du (x,1)
ox CAE ax? ®2)

Equating eqns. (Bl) and (B2), the wave equation is given as




» '

"y
)
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E‘;,
i.\ |
._\
FPulx ) _ E ulx,t) \ Ry
atZ == 2 (B") ‘..‘
P dx X
®
Now let u(x ,t) =u(x)sin(ur +¢) where w is the circular frequency of vibration and & -
.
is the displacement. Substituting this assumed form into eqn. (B3) gives -:C; A
o . =
~ Wsin(ut +) —‘iﬁi)- Y Gt +)u (x) (B4) g
° Cancelling the terms —ufsin(ut +&) from eqn. (B4) gives
)
Lulm) L we () =0 (B5) g
dx E
- Eqn. (BS) has a solution of the form N
u(x) =Cisin(85) +C; s (8 5) (B6) DS
) ..
where 8 = lm\/-z_i and where C, and C; are constants. :
TRANSFER MATRIX FROM LEFT TO RIGHT :::t
. o
To obtain the transfer matrix from left to right for a rod, adopt the left end of the rod in AN
Fig. Bl as the crigin for the x axis. Applying the boundary conditicns to egn. (BS), o
S
[
u =y, ,atx =79 =
u =ug ,atx =¢
where u; and u, are known quantities and solving for the constants in egn. (BS),
v
8 3
u(r) = 22 6in(0%) +u (8 5) @) e
a
N
L

.. . du . .
Usingegn. (B2jaa ¥V = AE I and calling the resulting boundary values as,




N=N ,aax =0

and N =Ny ,atx =¢ |

eqn. (B7) gives
£ sin®
u,=a50u,_ +'E_;;s—lne'-NL 4 (%)
N,=-%isin0u,_ +mSONL (Bg)
Writing egqns. (B8) and (BY) in matrix form,
£ sin @

y cos 8 EA 8 | (,
L. - ) @0

—yp S08 oos 8
]

whers w = pA ard the subscripts R and L denote the right and left ends of the bar, respectively.

Thus, from eqn. (B10), the transfer matrix T from left to right is:

£ sin®
s 0 EA 8
T = (B11)
sinf o050
~ulu? 3

TRANSFER MATRIX FROM RIGHT TO LEFT

To cbtain the tramsfer matrix from right to left far a rod, adept the right end of the rod

in Fig. B1 as the origin. Then, applying the boundary conditions to eqn. (B6),

u=uyp atx =0

andu =y, ,atx =~ ,

where up and u, are xnown quantities and solving for the corstants in eqn. (BS),

'."'l...."'.l."'.- .
tvyeieel

.l 'l
LA Ce

v
L ]

..
. -
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UpCOS O—u,,

g sin(8 %) + upcos(8 %-) (B12)

u(x) =
Using eqn. (B2) and calling the boundary values as,

N=NR ,atx =0

ad N =N, ,atx = =£ , d

eqn. (B12) gives
U, =05 Qupy ~——— sin BN 13
L * = Fae Vg (B13)
NL =£%25in eu, +“9NR (B14)

Writing eqns. (B13) and (B14) in matrix farm,

_ £ sin®
u s 8 EA 8 u
= . (B1S)
N . . smee s 8 N x
From eqn. (B15), the transfer matrix T from right to left is
__¢ sind
s 0 £EA 9
Tl = (B16)
sin® oos @
wluf 3

A A T T T T Pt U S ° *
a farlalass S e - L. S S N S G P A P R A I T S S A P
.......

A A et g gt g
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o Fig. B4 An elastic rod with distributed mass. o




Free-body diagram of on element of the rod.
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APPENDIX C

TRANSFER MATRIX FOR LONGITUDINAL VIBRATION IN AN ELASTIC ROD

WITH DISTRIBUTED MASS AND DAMPING

In this appendix, the transfer matrix from left to right for Iengitudinal vibration in an
elastic rod with distributed mass and damping is derived using the wave equatian. The derivation of
the transfer matrix from right to left in an elastic rod with distributed mass and damping follows a

similar approach and therefore is not discussed.

Fig. C1 shows an elastic rod with distributed mass and damping together with the sign
convention adopted far the forces and the displacements. The rod has modulus of elasticity £,
material damping ¢, mass demsity p, cross-sectional area A and length €. Furthermore, N(x ,t)
represents the internal axial force in the rod and u (x ,¢) represents the longitudinal displacement in

the rod.

Cionsider a small element of the rod as shown in Fig. C2. Using the momentum prind-

ple,

AN 2y (x .
~— = pA _a_“A(iz.‘_l (C1)
oX ot

Now assume that the rod can be modeled as a simple Vaigt material [11] with elastic modulus £

and damping constant c such that the stress-strain relatian is given by

de
og=Fe ~c—
at

By the Jefniticns of stress and strain,

...........................
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(C3)
Equating eqns. (C1) and (C3) and rearranging,
Fu(x.t) =_1_Eazugx,:g A dui(x t) (4
a2 P 3x? at dx? )

Now assume that

u(x ) =u(x)e'= (CH

Alter substituting eqn. (C3) into eqn. (C4) and cancelling the ¢'* terms,

) =0 (CS)

Egn. (C6) is the wave equation for longitudinal vibration in an elastic rod with distri-

buted mass and damping. It has a solution of the form.

v
Ty K,
1”":

Vo

v s
ot
(DN M

omy e ey oy -
NI
£

v,
l‘ L}
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u(x) =Cysin (65) +Cy o (65)

where 0 = f0\/ —&—
E +ic

and there C; and C; are constants.

Applying the boundary conditians,

u =u, ,atx =0

andu =uy ,atx = ¢

it il o A4 ahe Rix Sl ab. 1

()

where 4, and u, are known quantities and calling the axial forces at the left end and the right end

of the rod N, and N, respectively, from eqn. (C7),

and Np =—£?—6-sin9u,_ +oos AV,

Writing eqns. (C8) and (C9) in matrix form,

¢ _sind
=% Eae |)
= sinf
N “HS =T s 8y
R L

where u = pA.

(C8)

(C9)

(C10)

CRiBia aie Sibe A0 2hatate Bio A4
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The transfer matrix T required is thus

€ sin @
EA @
T = e sin , (Cil)
- —— 08
)

cos 8

The relationship between the damping constant ¢ and the attenuation parameter a has

o been imvestigated in [12] and is given by

¢ = £ tan 2 an 122 (C12)
w w

e
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Fig. C4 An elastic rod with distributed mass and damping.
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Fig. C2 Free-body diogram of an element of the rod.
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APPENDIX D

TRANSFER MATRIX FOR FLEXURAL VIBRATION IN AN
ELASTIC BAR INCLUDING THE EFFECT OF SHEAR DEFLECTION

AND ROTARY INERTIA

'ﬁr. transfer matrix for flexural vibration in an elastic bar including the effect of shear
defection and rotary inertia is derived in this appendix. Fig. D1 shows an elastic bar with
distributed mass and the sign convention chosen. The bar has modulus of elasticity E, shear
modulus G, second moment of area inertia about the y axis J, mass per unit length y, and radius of
equatior i. In addition, w denctes the lateral displacement, ¢ denotes the rotation of the cross-
sectional area about the y axis and M and V represent the moment and the shear force,

respectively.

Consider first an element of the bar as shown in Fig. D2, which gives

o[22

where GAs = GA/K, is the shear stiffness and X, is the form factor which depends cn the shape of

the cross-secticnal area.

The comstitutive bending relaticn for a bar is

—gy 22
M =El 52 (2)

Now corsider Fig. D3, which shows a frze-body cdiagram of an element of the bar.

Equilibrium consideration give the following equatians:

WA

¥

»
.

'
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%’- =V - uldy (D3)
L
dV s
=~ wdw (D4)
Differentiating eqn. (D1) with respect to x, using the relationship in eqn. (D2) and substituting into
i eqn. (D4) gives
dw | pwd M
o Tea Y T Er 0 (D3)
@
Now differentiating eqn. (D3) with respect to x, using the relatiorship fram eqn. (D2) and then
substituting into egn. (D4),
' 2 20}
d*M pf =
o TEr M rwiw=0 (D)
Eliminating M in eqns. (DS) and (D6)
L

d'w o+t dw  B'-or _
e e v o)

2
® where o = 22

GA,
BT
' EJ
®
_ owwr €t
and g = WTE
Now assume a displacement w such that
e
w =Ceu/(
where C is a constant. Substituting the assumed form for displacement into eqn. (E7), cancelling
®
the term ~Ce™’* from the equation, the characteristic equation is obtained as
L

. . - . .
-------
.......
...........
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X+ (oW = (Bf-or) =0 (D8)

The roots of eqn. (D8) are = A and = j)\, where

v = VAVE + L 74 o

with j ~ N

o+
NN =B —or
Therefore, the solution is

~ ¢ ~ _~Apx/t ~ Iagid ~ -
w=Ce"" +Coe ™ +Coe' T 4 CeT (D9)

where C,,C3,C, and C, are corstants. Eqn. (D9) can be written in the form

w =Ccesh() i}) +Cysinh(), %)
+C s l{f-) + Csin(y -}‘- (D10)

Wi'ETCCx =C-1 +Ez

C. =j(53‘64)
Examination of egqns. (D1) and (D10) shows that V and w are of the same form.

Therefore, let

- D R S T S SR L AR P e T R B S et e . . . . - R S .
' > 0. 3 - R . > L O T L LR S S L AL B .t
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v = Accsh(y ) + Azsinh(y ) + Axcas( 7) + Asin(x )

(D11)
Using eqns. (D1), (D10) and (D11),
Y=g {<c+x Awoshy 5 + Assish(y )]
+ (o-M) (A (N %‘) + Asin(dg %’)]} (D12)
Using egns. (D2), (D10) and (D11),
= § {(wx?) 2 [asish(y 3) + azcah(y 3))
= (M) -' [435"102 —) + Agcos (X —)]} D13)

Writing egns. (D10) 10 (D13) in matrix form,

[ ¢
3‘5-1 sinh(N —) B‘EJ cosh(N “)
- £(a+\) x £(o\)
v gr; TP T g :
M| T (o) . x I\ (o+N) x
v —F sich(y ) s cosh( 7)
cosh(y -’;—) sinh(y %‘)




e

F'T_ R RS N e i a i a a

o
£ onind) iy X
PY B'EJ B‘EJ
£(c-N) x (0“)‘2) x Ay
—_—— A, — )
En@) e o) x| (A (D14)
B‘ sin M 7 B‘ m( 2 e) A,
¢ cos(h % sin( Z)
Imposing the boundary values,
®
w=w ;¢=y ,atx =0
L w=wy ;g =Yy ,atx =¢,
where w, , we, Uy, Y, are known quantities. Calling the shear forces and moments at the right end
Y ard the left end of the beam as V, and M,,V, and M, , respectively, eliminating the constants A,,
A,, A,, and A,, the transfer matrix is obtained which relates the state vectars at x = 0and x = ¢
as
]
Co—0C,
- e, ey = (o=r)ei
U ¢ Co = TCy
M| = EJ ,
' gE EL e, + (3)c]
¢
o
L

.....
......

.................
.................

....................
............................
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N,
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I €2C2 €3 :-‘::.
L EJ pay et (el A
£(c,—tc3) _{i c -
E] EJ? v
Cy — 1‘C2 f[cl - (0‘+‘I’)C;] M
- |4
L. EC: o= X2 L
(D15)
with A = ———
N tN N
®
Cp = A()\%ccsh)q + Xfcm)\z)
N N
= A(T— cosh\y + — sin
C1 A( N x!. & M) 4.:’:
¢; = Alcashn ~ cosNg) L
® A sinkd  sink )
€y = -— -
‘ Fram Fquation (D15), the transfer matrix T required is thus e
€y — 2
e, = (o—1)cy) N
o r T £ cy — 10 e
= EJ 5
BEL e, Bl + ey o
E. EJ .'-j:f
%”(51‘0’53) %— €2 "
° |
~
e )
=
-3
®
-' ‘
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Fig. D1 An elastic bar with distributed mass (Timoshenko D
beam model).
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NG

_~PERPENDICULAR TO FACE

-~ /’
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4
Y s\l — o)~ PARALLEL TO X-AXIS

§ dw
\d‘x

o \v " ~<~CENTER-LINE OF BEAM

Fig. D2 An element of the Timocshenko beam.
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E <
E <

V+dV

r dx 3 —

° INERTIA FORCE = pw®w dx
INERTIA COUPLE= pi2 w? ¥ dx

Fig. D3 Free body diagram of an element of the i
Timoshenko beam model.
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APPENDIX E

TRANSFER MATRIX FOR LONGITUDINAL AND FLEXURAL VIBRATION IN

AN ELASTIC BAR WITH DISTRIBUTED MASS AND ROTARY INERTIA

The transfer matrix for longitudinal and flexural vibration in an elastic bar with distri-
° buted mass and rotary inertia is derived in this appendix. Fig. E1 shows an elastic bar with the sign
convention adopted for the forces and displacements in the bar. The bar has modulus of elastcity
E, shear modulus G, second moment of area inertia about the y axis J, radius of gyration about the
° y axis i, crosssectional area A and length €. Furthermore, the bar has displacement compenents
which comsist of transverse displacement w, longitudinal displacement u, rotation of the bar’s cross-

section ¢ and farce components which include the shear force V, axial force N and moment M.

If the transverse deflections are assumed small (relative to the bar cross-section), the
lengitudinal and flexural vibrations (or waves) are not coupled. The tramsfer matrix can then be
obtained by directly assembiing the tramsfer matrix for longitudinal vibration with the tramsfer

matrix for flexural vibration.

Since for longitudinal vibration in an elastic bar with distributed mass,

s £ sinh
EA 9§ u
NR _p{wzsu;e NL

and for flexural vibration of an elastic bar with distributed mass and rotary inertia,

e el L e el e Al telt e e I L P B . . EEE T
........................... N - .
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(]
i Co=TC2 £lei~(o+r)es)
o ¥ %c, co—TC3
[ = EJ
M ‘%icz T[—'rc,+(B‘+'r’)c3]
EEJ §'E
. V)l €3 (cl-wf’) <€2 c
&c £ 1¢
.Ell 'BT)_.,:';[-OC#(B‘*'O’)C:] -
-e—-(c —1c3) -f-c
EJ VT g ¥
L. 9
€, —TCy €IC1—(O‘H)C3]
E_ M
e C3 Co—OT J

Assembling egns (E1) and (E2),



s 0 0 0
i 0 Co=TC3 €[e;—(o+1)cs]
" 0 %ta Co—C,
1.1 ° EJ EJ
M 0 %2—‘?2 T["TCH'(B“*“J) c3)
v 0 %Egl(cx"a‘s) %CJ
(N ) L—uw-s*—"é—" 0 0
¢ sin 6|
0 0 EA 6
£ [ HBAICS] (@ Pl 0
B‘EJ [ 1 ) 3 B‘EJ -y C3
£, £, 0
EJ? EJ?
Co—TC3 €[cy=(o+r)cs) 0
%Cg Co—0r, 0
0 0 oxs 0

\N

(E3)
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where 6 = Cw\/%

L
-

A = 1 o
A= ol
N+ 4
o

:J‘ °d

Y,

o \ - VAVE Lo 7 1om)

RRRt: 15

co = A(\cosh N\, + Ncos X))

e
[ ot et
."1‘ o
. [HSELEAN

. =A(%sinhxx +%35in)<z)

v v e

. v e .
.. S AR

e [ U
s . . .

c; = A(coshy = s )

o
e = A -5

o L
o=%~ [

;= B8
EJ o

-

e
B ="

it

Thus, the ramsfer matrix T specified is
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X 0 0
0 Co—0C3 e[C;’(O‘H)C;]
’ 0 %C; €Co~TC,y
T =
0 B, Eliris@ el
J EJ
. o -y £,
_ung.s.'__ﬂ 0 0
0
£ sin @
0 0 EA @
2 e:
"é‘J‘Cz ?E_‘;‘[‘@ﬁ'(ﬁ‘ +@)cs) 0
¢ 3
E(Cl“?c;) E.’ Cy 0
Co—TC3 E[c,—(o+)c)) 0
%‘Cg Cg—r; Q
Q 0 . s 8 |

(E4)
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An elastic bar with distributed mass and rotary
inertia, undergoing both longitudinal and flexural
deformation.
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1 APPENDIX F

FREQUENCY RESPONSE AND IMPULSE RESPONSE FUNCTIONS FOR

LONGITUDIN AL VIBRATION IN AN ELASTIC ROD

Figure F1 shows the elastic rod to be used in this Appendix. The rod has modulus of
elasticity £, mass density p and cross-sectiomal area A. N denotes the axial force and u denotes the
o longitudinal displacement in the rod. For demonstration purposes, the rod is clamped at cne end
and the other end is left free. The rod is loaded at Section E with a sinusoidal axial force of

magnitude N,. Furthermore, the rod is assumed to comsist of six identical rod segments, each of

L length €. In this Appendix, the frequency response functions at sections A, B,C,D,E and F will
be obtained using transfer matrices. After the frequency respomse functions are generated, the
impulse resporse functions can be obtained wsing inverse Fourier transforms. In particular, the
L. irmpulse respense function is obtained for section B.

FREQUENCY RESPONSE FUNCTIONS

For longitudinal vibration in an elastic rod, the state vector z consists of the longitudinal
displacement « and the internal force &'. Thus,
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At boundary G, since the force is defined (that is, N = 0),

u
« b, ®

The excitation is given by Le’* where L is an input vectar whose elements correspend to

those in the state vector being considered. Thus, in general,

]
D
L=1p (F4)
H‘ where D is the displacement excitation and P is the farce excitation. In the present case, since the
axial force at £ is the excitation,
‘- 0 i
=1, !e (F5)

For longitudinal vibration in an elastic rod, the transfer matrix relates the state vectars

at the two ends of a rod segment as, from left to right,

¢ sind
{u} ocs8 £A 8 {u} Fo) :
—1 . b .,‘
N —ulid su;e cosf N, - 3
S
..1

and from right to left,
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)
u cosf EA 0o u
N’-=H£wzs'_136_wse L F7)

Let the transfsr matrices given in eqn. (F6) and (F7) be T (€) and T ~(¢), respectively,
where the ¢ in parentheses signifies that the tramsfer matrices are for a rod of finite length €.
Notice that since there is no impedance mismatch between the individual sections and the rod can
be comsidered as one continuous member, multiplying T (€) n times is equivalent to replacing € in T
by né,or

T*(£) =T (nf) (FS)

For the state vector at G,

0 0
{S}G ~T(OT(OT (OT (OT (T (&) {N} *TOTE) {Nﬂ}z ' )

or, wsing egn. (F8), eqn. (F9) can be written as

u 0 0
o), <reo i, <reo {7}, @

Now let A =T(6¢) where A is a 2>Q2 matrix with elements ay;, a;3, a5 and a3 and let

B =T (2¢) where B is a 2>Q matrix with elements by;, by, by and bsy. Eqn. (F10) can be written

as

JON

B4 s 8 o

T




{“ ay 012} {0} by b,y 0
o 0 G = [021 an N A + by by {Ava}l (Fll)

Considering the force vectors anly, from egn. (F11),

e
0 =auN, +bgN,
from which
[
b‘
N, =~ =—=N, (F12)
axn
)

But since 8 = fm\/_-g and n0 =n€w\/—-g

examination of eqn. (F6) gives

an = 0os69 (Fl3)

Substituting egns. (F13) and (F14) into agn. (F12),

Since by definition H (w) = oL

excitation’
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c0s28 :::::
wHi(w) = - =2 (F16) 4
®
N
where the superscript E denotes the exitation location, the subscript A denctes the respomse locaticn -::j.

* -
and the subscript N denotes a force resporse. Al g o~
.Y

u 0 o

N, =TO W], F17) A

Let c.y, cip, €21, €22 be elements of the 2>Q matrix T (£€) such that eqn. (F17) becomes tl-j'

® {u} €11 Ci; {0} -
N 3 - Cy1 €22 N A ":

u €12 e
® or {N}, =N, [szl (F18)

Using egns. (F15) and (F18), o

, = - N, 1 o
{“' }3 cossd 0 LC::] (F19) =

Zxaminaucn cf egn. (FS) gives -

. cn = o 22 (F20)

’

.
R

Cx =088 (F21)

v’
(f/"‘

!

T
SUS,

-
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from which,

£ sind

Notice that when there is no subscript to the left of H(w), the frequency response functicn is a
vectar whose top elerment represents the displacement response and whose bottom element represents

the force respomse.

Similarly, for station C,

26 sin26

Hi(w) = - ‘o683 | cos26 (F23)

for staton D,
o 3¢ sin38
~g |E4 "33
Hiw) = - 2= 2 (F24)
ccs99 ccs2d -

® and for station £, where E, is the pant just to the left of £,

o Hi(w) = -

O T T e e T AU IR C L S L AT AT L PSS SN SN SN
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Now the frequency respemse functions at G, F and E, are obtained where E, is the
pant just to the right of £. To awid arossing the discontinuity due to the exdtation at E, transfer

matrices from right to left are used.

Using Equation (F7), for the state vectar at A,

0 u 0
b ool -refl),

The minus sign is due to the sign convention chosen. This is because transfer matrices from right to
left is wsed. Now let D =T7'(6¢) with elements dy;, dy3, dy;, and dy; and E =T 1(4€) with

elernents ey, €12, €31 and £s,. Equation (F26) can be rewritten as

0 dy du| [u €1 €1 0
AV A = d:l d:z 0 G - e:l en N0 E (H")

Ccnsidering only the displacement vecter at A,

0= dul‘g —eu.V,

Un = - N s
or u d:z ° \ 8)
Fram egn. (F7)
= _ A sind8 :
‘2= TFL a8 (£29)
dy, = =69 (F20)

YR S LT P Ty '-' * 'w' ) . W
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Thus,
o
A€ sindg
EA 49
HE(w) = ~ ~=ts (F31)
o

where the subscript u denotes displacernent response. At station F,

u u
) - ), -

o Let f1y, f12, [ and [ be the elements of T 7/(€),

{u} ~ [u] _
° yJ, =ug £, (F33)

Using eqns. (F28), (F29), (F30) axd (F33),

@
sin40

{u} __ 3 49 [fu}v

W, EA oos69 [fau]°
g sindd -

. 4/ 19 i -

or Hrlw) = =70 83 H (F34)

| J Since egn. (F7) gives
i

: >
@ ':-f

~
MY
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fu =c=6 .

fn = Pf“’zs_ireig' , N
egn. (F34) can be written as

sind@
LIS by -

Hf(w) = - . (F3%5) -
EA cos6d sing e
plo? 8 .

Similarly, for station £, where E, is just to the right of paint E,

sin40 2
4¢ 49 <=
EA cosb8 2Hfu;§if_12_9 (F36)
29

Hfp(w) = -

DMPULSE RESPONSE FUNCTIONS ;
In the present case, since the frequency respense functions are quite simple (from a »
mathematical pant of view), the ircpulse respomse functions can be obtained in ciosed farm by .:-:.
simply taxing the inverse Fourier tramsicrm of the frequency response funclors. :\_-:
First comsider the impulse force response functons at point 8. From Equaten (F22), —_
‘or the foree respomse,
s 8 .
Hi(w) = = == o9 7 N
wHis(w) cs68 (F37) AN
where the subscript N cdenctes the force respomse. Using the relatienship SN
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...........

PO AU IR SRR . L.
-t . e . A Y S
PRI PVIVIVIR TG Vo TR TV TN DU DV IR W i




Equaton (F37) can be rewritten as

120 —2¢8 i8 -8
et +e e’ +e 2
vHi(w) = — ' rT) 68
2 2 %% +e”
(F38)
Rearranging eqn. (F38),
HE(w) - - el3‘ 4'8-‘3. +eiﬂ +e-40 ) 1
NilB 2 e:éa +e-|60
(F39)
- - e — ot .
Multiplying eqn. (F39) by P Ty and arranging terms,
8160 _8-460 elJC +el3C +elQ ‘C_‘ 1
NHBE(w) = ( )( 2 3 : —~ 128 ilze
e ie —e id
(F40)
Factoring the term e ™*2° from eqn. (F40)
1129
~H5-(w) = ?2 (elol _e—téﬂ)(enk _+_e—3€ +ex€ ‘e—ia)
1
T, (F41)
Sine ———= = T ™* [13], g, (F41) becomss

R

B

4
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ellZG(eléo -8-‘6.)(2‘” +ed3l +el. +e4ﬁ

yHi(w) =

2
o
. -2 elZlI (F42)
& =0
® Rearranging terms in eqn. (F42)
VHE(W) =% (1139 + 170 4 1190 4 o210
. 30 b 70 198 1246k
—!N !N =T =) F e
Z
o
o
vHE(w) = % é(euso + ol178 4 198 4 pid10
£=0
@
,_em _,_em _el7o _elN)end& (F43)
* , 17 17 .
Since h(t) = Ey _]' H(w)e'*dw[10],and =— f eive'mdw = ¥t —7) where &t —1) is
the Dirac cdzlta functicn, also keeping in mind that

8=fw\/j_£7 ,

integration of eqn. (F43) term by term gives

P S R e e e T T I
e L e A et ey S tomtn Kate o Sadin Sondimd P
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% " Y

]
l”;*-" " .

WhEO =L 3 (- - G400V 2] — g - (s+246)¢\/ 2]
® £~0
- 8t = (1+240)6\/ 2] - s - 9420k V2 -

+ §r - (15+24k)€‘\/g—] + §r - (17+24k )g‘\/%_] ,.'_

+ 8 - (19+24k)€\/%] + 8 - (21+24k)e\/%]} 2

(F44)
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7
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Fig. F14 An elastic rod loaded with a sinusoidal axiai force.
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-
TRANSFER MATRICES FOR WAVE PROPAGATION IN A 3-BAY ::_:j
PLANAR LATTICE STRUCTURE ,':-‘:Qy
° e
Fig. G1 shows the 3-bay planar lattice structure to be used in this appendix. The planar
structure is assumed to comsist of identical elastic bars with distributed mass, each of length ¢.
° Each bar has modulus of elasticity £, mass density p, shear modulus G; cross-sectional area A,
second moment of area inertia about the y axis J and radius of gyration about the y axis i. The
cross secticnal dimension of each bar is assumed to be small compared to the length, and the
° Tirmoshenko beam maodel is adopted. Each bar has transverse displacement w, longitudinal displace-
ment u , angle of rotation of the cross-section v, axial force N, shear force V and moment M. The
° sign convention for the displacements and forces in a connecting bar as shown in Fig. G2.
In analyzing the wave propagation and vibration of the planar structure shown in Fig.
G1, two transfer matrices are inwlved. The first transfer matrix X; involves the transfer of state
® vectars in two bars, each of length £ in main members I and II. For example, merobers 12 and 12’
together are represented by such a matrix. The second tramsfer matrix X, involves the tramsfer of
state vectcers across the juncticns. In a pericdic unit, the members that join main members 1 and I
¢ cemstitute such a transfer matrix. For example, member 11' results in a trarsfer matrix X,. Fig.
G3 shcws a 3-bay planar structure which has been sectioned into its constitutive parts resporsible
for ransfer matrices X; and X,. The subscripts R and L are wsed to denote pants which are just
3 to the right and paints which are just to the left, respectively, of junctions which connect main
members I and II.
o
D
o T L N T T T e L e e
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TRANSFER MATRIX X, el
.\.-'
o | %
Transfer matrix X, can be obtained by simply assembling the transfer matrices for -
fexural and lngitudinal vibratiors in straight bars such that both the state vectors in main e
)
i
members I and II are considered. The tramsfer matrix for longitudinal and flexural vibrations in g
‘ [}
straight bars is given as q
Py cos 9 0 0
0 Cog—0r2 E[Cl—(O'H)Cﬂ
0 %‘C; Co—7TC,
0 BEL . Eleir(@ o))
® £ 4
0 'Eff—.l'(Cx—Wg) 'Ef%"‘Cz
._pngﬂ 0 0
L e
. -
£ sin 8
0 0 EA 8
£ e (O
yTii E-E;['Wx*(ﬁ‘ )es) 0
o £ £
7 (ci;—1cy) £y 0
Co=~TCy AT Camdl-H| 0
%C; [ofi ham @ o8] 0
¢ 0 0 s 0

correspending to a state vector

- = d
‘ p
where
R O DI S T R e -t e e - - - -
.A-A'.‘ 'Y o A T LR Y P T - . . e . R LI . R SRR - . - -
Y R I SIS A A R S T e e D
i, . Eaa T e s e e
—a . m . m -’ - - 3 -
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and where 6 = &J\/%

A= .,1 . ‘.

AN o

- - VAo 74
)\'2 B‘+C1 (o= F 3 (o+1) i

3

co = Acosh & + Neos %) s

ot

Cy

A[% sinh A\ +% sinh M]

® c; = Alcosh M — cos Ng)

C3=A

[sinh N sin x,] s
N

N
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Partitioning the transfer matrix given into four 3>3 submatrices C,,C,,C,, and C,

such that
o s 0 0 0
C1 = 0 Co—CC2 €[c1-(c+r)c3]
0 %C; Co™TC:
e : .
£ sin 0
0 0 EA 0o
£ £
C: = E‘Cz FE}‘[*“F"(B‘*O:)CS] 0
° £ £
| £7(€e) E]°? o
EJ EJ ]
. 0 BE . Eler(@eo))
Cy, = 0 %J‘(Crﬂfs) %&lcz
_Pgu;ine_ﬂ 0 0

co—rc; €le;—(o+w)e;] 0O

Ci = *f—c, Co—oUT; 0
L 0 0 s 8

The foliowing relations can be written

......................

...........................................................

..........
.............................
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4] _le: c]fa R
{Pl }. [CJ CA] {Pl }L (G1) ‘. ¢

dy{ _|C: C:|ldy .‘::'.
{Pu}k - [Cs Ct]{Pu}L (G2) o

where the subscripts I and IT stand for member numbers. Y

Egns. (G1) and (G2) can be combined to form A

AR ~

n{ _ 10 Ci C2 0 lay e

° Pu 0 Cy C¢ O{lpy G3) Yy
Pr ® C 3 0 0 C 4 Pr L

o v
PR

A

Notice that eqn. (G3) relates the state vectors at the right end to that of the left end of

1.'

a section of a periodic unit which is represented by transfer matrix X,.

“i i

2t
‘g 1y 2ty

Fram eqn. (G3),

2

> r
AR
(AN

(3

¢, 0 0 C,

_10 € C: 0
Xi=10 ¢y ¢, 0 (G4)

Cy 0 0 C,
| J TRANSFER MATRIX X,

From the previous section,

d ___rctczd
PR Cy, C, P,_

® Cansicer an I-junction as shown in Fig. G4. The forces and displacercents of member 11° (Fig. G4) -
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are shown in Fig. GS. For member 11/,
o
-kl
JN T {Cs Col B 1 (G3)
e
where d and p are displacerment and force vectors in the Jocal 11’ coardinate.
In crossing over from left to right of junctions 1 and 1', the displacements are unchanged
® but the bar 11" introduces discontinuities in the forces and moments. Assuming the displacerzents at
the junctions are known, these forces may be computed fram the elastic, geametric and mass proper-
ties of bar 11",
® : :
Fig. G6 and G7 show the directional relationships between local and global state vectars
in junctions 1 and 1’, respectively. By inspection of Fig. G6,
®
—uy = Wy wy =dy ) =&h
d 0 10f|u
® o 1wl ={-100]|{—w (G6)
v . 0 01l .
a.!ﬂ V‘l =AV1 ',A"?I =Aw1 ;1\71 = —V1
L
M 10 0]|M
o (vt =100 -1{{V (G7)
N, 01 0}|N .
<

Similarly, inspection of Fig. G7 gives
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Uy = Sy we =iy by =g

Egns. (G6) through (G9) can be written as

where

(G8)

(G9)

(G10)

(G11)

(G12)

(G13)
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RRRAR
»

(0 10 8
G =|-1 00 i
® [0 0 1 e
l..
G ’(1) g 01] %
: = = N
_0 1 0 :::.
™
o i -
0 10 -
Gy=1|-1 0 0
{0 01
-1 0 0
Y G.=lo0 o0 1
0 -1 0 -
From eqn. (G5), o

d, =Cdy +Capy (G14)

¢ pr =Cohy +C iy (G15)

S
‘c by ‘g

¥

1

Multiplying eqn. (G14) by C;! and rearranging,

pr =Ci'd, -Ci'Cidy (G16)

@ Transforming the local coordinates to the gictal cocrdinates in the main members, wing egns.

(G10) to (G13),

P

7

X 7

l‘l‘ .
. .

0

......
.......................

--------------
.......




P =Gy

a p, =G,CL:'Gyd,

+G3(C3 —CL7IC)GA,y (G17)
o
and py =G.py
a pr =GL7'Gdy ~GL7'C.Gody (G18)
o
Writing eqns. (G17) and (G18) in matrix farm,
o

{;1} GzC‘Cz_IGI Gz(C; -CQCZ-ICI)GJ {dl}
1’ . Gng-lGX —G4C2-1C163 dl' (Glg)

Now examune Fig. G8, which shows the farces at junction 1. From equilibrium con-

siderations,

M, M, M,
Vi ={Vit +{Vu (G20)
AVX Py ‘Vl L ‘Vl

lwl Awl’ Awl
V1- = Vl' + Vy (021)
Avl’ R Vl L ‘Vl

Fram egns. (G20) and (G21),

-----------
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®
L
®
where J is the identity matrix, and from eqn. (G19),
®
0 0 0]|% _
{:\} _ 0 0 0] ldv
b d e Sleeite, -6eices  00llp (G24)
GzC‘C{IG; Gz(Czl‘C‘C{IG;)Gg 0 a P L
® As mentianed previously, displacements are continuous in crossing junctions 1 and 1°, thus,
100 0}[d
¢ d; _oro 0] 1d:
d.J, =100 00}lp (G25)
0000|py|
o Eqrs. (G23) through (G25) can be combined 10 form
e
®
N I I N R R T R R R S e
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d. I 0 0 0] |4
dy 0 I 0 0|4
pr| | GLi'Gy ~GCi'cics 10}l (G26)

P P GzC4Cz.1Gg Gz(CQl-C4Cz-lG1)G3 01 ¥4

Keeping in mind that 1 corresponds t0 a paint in member [ and 1’ corresponds to a paint

in member I, eqn. (G26) can be rewritten as

d I 0 00}
dy 0 l 0 0)ldu \
| = G6eile, G CiCCs 1 0)1py (G27)

P, G:L LGy Gi(CyC LG )Gy 0 1| (P

Notice that eqn. (G27) relates the state vectars (on main mercbers I and II) on the right
end to the state vectors an the left end of a section of a pericdic umnt which is represented by

tramsfer matrix X,.

From eqn. (G27),

o 0 0 0]
_ 9 I 0 o’
X: =\ 66, GCicCy 10 (G=3)

G:C;C;—lG: G;(C;;C.C:*GQG; 017

......
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MEMBER I
A 1 8 2
J"4 J-s
+ - t
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MEMBER I

Fig. G4 A 3-bay planar structure.
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Fig. G2 Sign convention for forces and displacements in
a connecting bar.
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TRANSFER MATRICES X,

0, = YA — 4 b Ll > fe—— F > 3
T OR A N\ 1R B 2.\|) 2 ¢ 3,
Y

/ ! ! ! ! J ! / /

o'l £ o (4 Pe— y —1 ) of) le— 2 -

TRANSFER MATRICES X4

Fig. G3 A planar structure sectioned into constitutive
parts which make up the transfer matrices

X4 and X».
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Fig. G4 Diagram of an I-juncticn.
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0‘1,‘?’1

Fig. G5 Fres body diagram of member 11"
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Fig. G7 Dirsctional relations between global and
local state vectors at iocation {1’
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APPENDIX H
L
FREQUENCY RESPONSE FUNCTIONS FOR
A 3-BAY PLANAR LATTICE STRUCTURE
® The frequency response functions for specific locations in a plamar structure can be
obtained through the use of transfer matrices.
Consider the 3-bay planar structure shown in Fig. Hl. For demonstration purposes, the
o
structure is loaded at the mid paints between members 23 and 2°3’ with sinusoidal shear forces. It
will be shown that the frequency response functions for locatiors A, A', B, B',4,5 and 6 can be
obtained. For simplidty, assume that the cross-sectional dimensions in the conmecting bars are
L
sraall compared to the lengths and that the structure comsists of identical rod elements throughout.
The exditation is given by Le'™ where L is an input vectar whose elements correspand to
® those in the state vector being considered. In cther words,
D,
B Dy
e L=1p, (H1)
P,
where D is the displacement excitation vecter which includes the langitudinal displacement u, lateral
¢ displacerment w and retation of the bar oosssecticnal area , and P is the foree excitation vecticr
which includes the moment M, shear force V oand adal foree V. The subscipts I and IT wsed in
eqn. (Hi) stand for the entire upper and iower memnber numbers. In the present case, since the
€

shear forces are the only excitations,
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(H2)

(H3)

where 0 is a null vecter of dimersion 3.

then,

Since there are no applied forces along the 0-0° and 3-3' boundariss, at 00’
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d,
¢ dy
Zoo = 0
0
00
o ard at 3-3'
d;
dll
o Zyy =g
0
3=y
® Now let X, be the tramsfer matrix corresponding to two bar elements of length € in

members I and II, X!? be the tramsfer matrix correspending to two bar elements of length ¢/2 in
members I and II, and X, be the tramsfer matrix for the vertical members which connect main

® members I and II. For the state vectar at section 3-3', going from left to right along the structure,

d, 4, 0
dy d; va 0
o 0 =X1X1X2X;XZX1X2 0 + XX LZ (I"I'i)
0 0 L,
=¥ 0-0'

c-c’

Let K =X.X.X,X X.X.X, be a 12x12 matrix with elements o 3x3 submatrices where each
sutmarix is dencted by &, (i =1234 and j=1234) and it 3 =X,X!"? be a 12x12 matrix

with 3x2 subrmatrices b,,. Then corsidering cnly the laad veciars in 3-3', from eqn. (H4),

{0} kyk g {dl} byb {Lz}
0 1-3 - ku_k,u d”,O—O' + b‘]bu L1 c -’

----- e T e .t~ - -
R . . SO T S S N AN
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{d:} kaky |7 [b1bs {Lz}
diufoo = " |kaka] |JpobulWife o (HS)
Al station A~A’,
2
d, dl
dll dll -
=yl -
Pl —xl Xz 0 .
0
P A-A 00’
Let B’ = X2X, w..1 elements of 3x3 submatrices b}, then
d, bibi;
dy buba {dl}
Pu = babn | ldu oo (H6)
P baba
Substituting 2qn. (HS) into eqn. (H6),
d[ bl,l b!:: - :-:
dy by bn||knkn| [bandul||l e
P T by bnllkaka bubau | |L, (H7)
Pt )aa bu ba ¢
e H ) is v definition EEONSE ar -
Since H {w) is by definition _L__—exa'tan'on , from eqn. (}7),
by by -
, by bn|(knkyn| [bundu
HSS@ = -|,0
bn bn kdlkdz b‘JbM
by ba

where the subscript in A (w) stands for the response iocation and the superscript stands for the

exdttion jocaten. Sectioning eqn. (HS),
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e o [pi B [l kx5 b
Hi™ () =~ by ballka ka by bu (H9)
and
e bu ba[ks k2] [by b
Hi (@) = =y po| ka # b., bu (H10)

where the single subscript now denotes a specific point in the structure.

Similarly,

e bi b | [kn k2| [by bu
Hi"(w) = - by ballka ka by bu (F11)

and

by bn|{ky kn™t{by by
(H12)

¢ -C' = - . ~
H§ ™ (w) [bn byl lka ko |bo bu
where b,; are 3x3 submatrices of B™ = X!?X,X X,

To obtain the frequency respomse functions for stations 4, 5 and 6, transformation

matrices are utilized. First consider the forces at junction ] as shown in Fig. H2. From equilibrium

corsiderations,
{ M, M, 74
1% =4V, -1V (H:3)
le N, v,
1 I L

Similarly, for juncticn 1,

.................
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®
o Vit =1% -1V (H14)
Nojooo v, W),
where the subscripts R and L stand for right and left, respectively, of paints 1 and 1’. Eqns. (H13)
o and (H14) can be combined as
GL-0 - ;
14 - 1)» - 1)L (}{I“)
®
The state vectors tc the left and right of junctions 1 and 1’ are related by the tramsfer matrix X,
such that
o
d, 1 0 0 0]
d, 0 1 00]}d,
nl ~ |GL1G, -G.L:'C G, 1 01p; (H16)
° p.).  |6CLi'G GiCr=CiCitcG? T lni,
from which
® d,
X GL:'G, GL7'CGy 1 0]jd: .
pi| THGLCFIGL GuCy=C.C:CIGO 1|1 (H17)
2 1 L
€
Cambining egrs. (HiS) and (Hi7),
d,
t pv: GJC:‘IGl 'GQCZAGJ 0 dl,
2] T lo.ccGy GuC,—C£7C)G0 0] lp:! (H18)
P},
o Since displacements are contnucts in arossing over juncticns 1and 1,
®
e e e e T e i e e N i i T e
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Eqrs. (H18) and (H19) can be combined as

g dy I 0 0 0}l9
dy 0 1 0 0]]dy
4% - G4Cz_lG1 -G4Cz'1C103 0 0 1 4% (}120)
P1)  [GLLIG GiC,CLiC)GY Ol ),
@
Keeping in mind that 1 corresponds to member I and 1’ corresponds to member 10, eqn. (H20) can
be rewritten as
o
d 1 0 0 0] |4
dy 0] 1 0 0||du
| |GLi'Gy  -GLCiliCG, 0 0{{pu (H21)
o Pr GL.Ci'G, Gy(C—C.CC)G, 0 O | .
Now let the tramsfer matrix in eqn. (H21) be X; for station 1-17,
. d[ d!
dll = dll 2
Pu = XXX Pu (H22)
)iy Pt Joor
16
Let b,; be 2x3 submatrices of B™ = X:X1X1, then, since there are no force comstraints at staticn 0-
0’,
<
d, biiby
dy babx | |d,
Pu T bnbn | ldu (H23)
° P} . (baba 00"
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The directional relationships between the local state vectors in member 11° to that of the
global ones in member II at junction point 1* is shown in Fig. H3. Imspection of Fig. H3 gives the

following relations,

_.“‘)l, = -uy ﬁl' = —wy, ,lblr = ‘1’1'

u 0 10}|]u
Sl =|-100}{-w (H24)
o, looofly ),
a.l'dv.y=N1';4‘?1'=—M1';N1'=‘Vl'
[o-¢
-10 of[m
vi =lo o 1|{v (HS)
N. 1 0 —1 0 AV 1

Combining eqrs. (H24) and (H25),

{i} - [g | 2] {Z} (DS)

where
0 10
Gi=|-100
0 01
and where
i e e e e T T e e -Mh;gl-_.x.a
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Referring back to Fig. H3, at station §, which involves the tramsfer of state vectors in

b1
/‘.) .

4

® station 1’ through a length of €/2 fram 1" to S,

L (.

) pafeie] )
b ‘s_T 0 G; 1 (H27)

where T'?2 is the transfer matrix for a Timoshenko beam of length £/2. Since from eqn. (H23),

¢ {i} ) [b;;b;;]{d,}
v (babz | @)oo (H28)

Substitution of eqn. (H28) into eqn. (H27) gives

a} Ll o [{esiez] [knkn|™ [buba {Lz}

5) s =T" Gy |bnbn| {kuka budu | Li)e <
from which

e 2 Gi 0 |[bnba | lknkn]™ [pubxu
HSC(w) = -T 0 Gz' bz';ba'z' kaka bubu (H30)

Sirzilarly, for statien 4,

@
BN

-, r
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B
G: 0 b bE][ks k][ b bu .':::.“j
HES () = =T ol | pw ool les & bu b Ry
2 A 0%k ka “u bu s
[ _ |
(H31) R
where bY are 3x3 submatrices of B =X,. For station 6,
, Gi o |[oh bh][ks kx| [bxw ba
H{<'(w) = -T'? : vopv
0 62 b31 bn k41 k4z b43 b“
(32)

where b)) are 3x3 submatrices of BY = X,X ,X2X,.

To obtain the state vector at locatians to the right of excitation station. C-C’, it is more

convenient to use transfer matrices from right to left. Since the derivation follows the same

procedure cutlined previously, it is not discussed further here.
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Fig. H3 Directioncl relations between global and
local state vectors at location 1.
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APPENDIX 1

TRANSFER MATRIX FOR 3-DWAVE

PROPAGATION IN ATETRAHEDRAL TRUSS

The transfer matrices for wave propagation in a tetrahedral truss are derived in this
appendix. Fig. I1 shows a tetrahedral truss with three repeating periodic units, which is to be used
in the derivation of the transfer matrices. The tetrahedral truss is assumed to be made up of identi-
cal elastic bars with distributed mass and dircular cross sections, each of length €. Each conrecting
bar has modulus of elasticity E, mass density p, shear modulus G, cross-sectional area A, secord
moroent of area inertia about the 2or y axis J, second moment of area inertia about the X axis Jr,
and radius of gyration about the x or z axis {. The cross-sectional dimension of each connecting bar
is assumed 10 be small compared with its length. Fig. I2 shows the sign conventions for the forces
and displacemeants in a connecting bar in the global xvz coardinates. Each bar has longitudinal dis-
placement u, trarsverse displacements v and w in the y and z directions, respectively, and angles of
rotation. ¢, ¢ and 6 about the x, y and z axs, respectively. In addition, each bar also has moments
M, and M, about the y and z axes, respectvely, torsion T, axial force N and shear forces V, and

V, aleng the vy and z axes, respectively.

Py In the amalysis of wave propagation in a tetrahedral truss (Fig. I1), thres tramsier
matrices, namely, vV, V¥, and V, are develeped. Fig. I3 shows an arbitrary segment of the
tetrahadral truss and Fig. 14 shows the segment which is sectioned aleng plares parallel to the y:
< planes into the subsiructures responsible for the transfer matrices V,, V', and ;. Referring to Fig.

14, the sectiors are mace by cutting the periodic unit (Fig. 13) along planes GARIDg , ExKzFrle

(¢ ELK, F L) and HB,/C, which are all parallel to the yz planes. The subscripts L and R used

® fcrpins E,A.D.F,X,L,B and C cencts paints just left and night of these paints, respectively.

Thus, the first transfer marix ¥V, mypresens the qamfer of state vectars in memnbers which join
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members [ and ITI. For example, members AD and BC each result in a tramsfer matrix V,;. The
second transfer matrix V; invalves the tramsfer of state vectors in four bars, each of length ¢/2 in
members 1 through IV together with members which connect member I to member II, member III
to member II, member I to member IV and member II to member IV. Referring to Fig. 14, this

includes members AKX, IF,,DxLl;, G1E’_,ARFL,D’FL, AprE,  ,DgE;. I.BSﬂy, transfer matrix
V3 is resporsible for the transfer of state vectors in four bars, each of length €/2 in members I and
II together with members which commect member II to member I, member I to number ITI,
o
rmember IV to member I and member IV to member III. For example, referring again to Fig. 14,
this includes members XRBL,FRJ, L.C(_, ERH,FIBL,F’CL,ERBL and ERCL.
® TRANSFER MATRIX V,
For the flexural and longitudinal 3-D vibration in an elastic bar, corresponding to a state
d
vector z where 7 = {p}
o
ard
L
R
/ -
v ) [Mﬂ v
.
<€ 14 -y ~
=Wy T
d = d) , D= 1Vx
U v,
L9, (v )
8
the transfer matrix T is given as [5],
| J

...........................
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. ¢, C .':,-_
. T = Cg C‘ al) e

:::;

&

where C,,C,, C,and C are 6>6 submatrices such that \'i

. “h

® o3
8 0 0 0 0 0 By

c,—; O 0 0 &[c,—(o+1)cy) -

€y —OC 0 e[Cl—(O'H)Cﬂ 0 .:':

s a 0 0

OOOOQ

)
"’Pcoo

0
%-c, 0 Co—=TCy 0 .
0

0 0 Co—TC2

sin 8

: -
¢ 0 9 L

<
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0 £, 0
a
0 0 ECZ
a
c 0 0 0
3 —3
0 0 %(c;—oc,)
0 %—f(cr—a:;) 0 .
pfulz%—e' 0 0
¢ . 1
0 0 ;‘['ﬂtﬁ(B‘*‘f)Csl
0 —i—[—Tcl+(3‘+1’2)c3] 0
-a':TG sin a 0 0
0 E (5 0
a
0 E Cy
a
0 0 0
co—rcy; O 0 0 AT Cand )|
0 Co=—TC> 0 f[cl—(o*r)c;,] 0
0 0 o8 0 0
C,x = 34
0 TC; 0 €y~ 0
%‘-c, 0 0 0 o lant )
0 0 0 0 0
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where 6 = fu\/%
a= fw\/g

° £
@ = EJ .

CA S A Al At 2.8 |

I

i

B
o

=

et
GA,;

e
GA,

Co = A()\zca;h N+ Meos )q]

c—\[’\" inh )\, + =2 }
1—‘?\5 A Msmk’

C; = \(cosh p = oos &)
_|sinh A _sin)q
C;—A[ ~ M ]

Consider member AD (Fig. 13) which is representative of iramsfer matrix V. Fig. 1§

shows the directicnal relatcomships between the global state vectcrs and the iocal state vecless.
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Inspection of Fig. IS gives the fallowing relations,

»~
W Wy
i "
© | ]
A
Poe s
- o ) »
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PToy
W A
TR - N

@
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In matrix form, for junction D,

12)

F

JD

N\

u

{

v

¢

"
8

\

4

0 -1 00 0 0]

1 00000

0 0100 O}

000100

0 0 00 O O]

~~

)

=,

. a
~ Y
[N
XX EENZ
cooo—~o
ocoooco
Coo oo
OO 0o
oo Tooo
ReR=R=R=R-N-

i
O o ke o =

Similarly, for junction A,

o
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Eqns. (I2) to (IS) can be rewritten as

Po =Gpp

a

dy =G,

Py =Gupa

= G, such that

where G;

PV S AP SN OIS
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For member AD, -

o -
Bkl

5)p (€3 Caf b4 112) :::::.’

where C,,C3, C1 and C, are defined previously.

From eqn. (112),

e N e e
e

8 18,

K .’

dp =Cid, +C:P,4 {13)

| P> =Cda +Cipa (114)

Multiplying eqn. (I113) by C;*,

R AT e e S e et e e .
L. RIS YA VAL e et as
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Pa =Ci'dp —Ci'Cid, 15)
Substituting eqn. (I15) into eqn. (114),
Po =C4C2.1‘io + (C3-C4C1-1C1)¢i4 (116)

Using eqns. (115), (I6) and eqns. (I8) and (I7),

Pa =G‘C2.lcldp -G¢C2-IC16#A (117)

Using eqns. (I16) and (16) and egns. (I8) and (19),

Po =GLL:Gidy +Ga(Cy =C.C'C)G (118)

Eqgns. (I117) and (118) give the force response at A and at D due to the displacements at A and D.

Now comsider Fig. I6, which shows the farces at junctions A and D. Fram equilibrium

corsiderations,

D Ja T ) (o) L, (119)
where the subscripts L and R denote points just left and just right of A ¢ D.

Keeping in mind that A is in member I and D is in member III, using eqns. (117), (118)

and (119),
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P 0 0 0 1000]]|py
P Gz(C;"C4Cz—1C1)Gg 0 GzC4Cz‘lGl 0100 P
ml = 0 0 0 001I10}]p,
2 G706, 0 GCilG, 000 If|p )

where the subscripts I, I, IIT and IV denote member numbers.

In crossing the joints A and D, since displacements are continuous,

d 1000||9
dy 07100jldy
dyy| ~ |00 1 0}|dy,
dy 000 I|ld,
R L
Combining egns. (120) and (121),

( { N
d, I 0 0 00000]d,
dy 0 I 0 00000] 4,
du 0 0 0 00000 dy
dpy = 0 0 I 10000/ dy

Voow { 0 0 0 01000 py (
P Gi(Cy—CL7'C3G; 0 G.LL7'Gy 00100 ‘ D
Pu 0 0 0 00010 i Pu
o GCi'CiGs O GL7G, 00001l p
puy R LG:(C;-C.;C{‘C;)G; 0 0 00IO0 0} !\Pm‘ L

Thus, fram egn. {122),

...............................
...........................
..............

(120)

121)

..........
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( I 0 0 0 0 0 0 O ‘
0 I 0 0 0 0 0 O
0 0 1 0 0 0 0 O
vV, = 0 0 0 I 0 0 0 O
0 0 0 0 I 0 0 O
G:(G;~C.L3'C)Gy 0 GLCC7'Gy, 0 0 I 0 O
0 0 0 0 0 0 I o

-G L£7'CiGy 0 GCL7'G;, 0 0 0 0 1 )

123)
TRANSFER MATRIX V;

Fig. 17 shows a substructure which is representative of transfer matrix V,. Caonsider first
memebers AgK,,IF,, Dxl, and GE;. Noctice that these members are parts of main members I,

I, IIT and IV; respectively, each of length {/2.

Fram egn. (11), the transfer matrix T for longitudinal and flexural vibraticn in a bar of

lenth ! is given by

_ ¢t G

where the submatrices C;, C,, C; and € where defined previowsly. Thus, for a bar of length €/2,

the transfer matrix T 'is given by

. _|Ci Ci
= [c; c;] (24

where the submatrices C;,C,;,C, and C, are obtaired by substituting ¢/2 for € in submatrices

C;, C;, C3 and Co, rﬁpﬁtﬂe’y

. e
o 4,0, 8,
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Using eqn. (124), the following relationships are obtained,

bL.-Eale

144 - LCQ Co'_ Ar (125)

bk s
FL - Lcé C4J /A (12 )

R 7
1y |Cy Cij\P)on (27

f.-Eely s
a C3 Co Gy, (©28)

Keeping in mind that A, ,/, Dy and G are all left-end paints of the substructure (shown

in Fig. 17) in numbers I, II, ITT and TV, respectively and X, , F, , L, and E, are all right end paints

of the substructure in members I, IT, IIT and IV, respectively, and using eqns. (125) to (128).

(4, ] (¢ 0 0 o o0 o o ¢4 )
dy o ¢, 0 0 0 0o c; 0 ||dy
du 0 c. 0 0 C; 0 0 ||du
dr =] o Ci C; 0 0 0 ||dy
$ o } 0 0 o0 ¢ ¢ 0 0 0 fpf
o 0 0 cy O 0 c. © 0 P
. 0 ¢; 0 0 0 0 Ci 0 {lpu
m | c; 0 0o 0o 0 o0 o c;j\ n |
' My M, (29)

where the subscripts M, and M, dencte the night-end and left-end paints of the main members

only.

Now comsider members ApFp, D, AgE and Dy E;, which are the remaining

et e et e et e I T R Wi o
ER S N U VA PR TP U YR W I PP U N T Ty N

APk e T .
Catalatatatav..
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members to be analyzed. Notice that these members, each of length /, join the main members
ot together and the local state vector cocrdinate of each does not coincide with the global state vector
coordinates in the four main members. Thus, with respect to each number, transformation matrices

have to be utilized in arder to comsider the tramsfer of state vectars fram one paint in a2 main

* member to another paint in another main member (for example, fram A, in main member I to F,

in main member II through member A F ).
Consider first member Ag F; . Fig. I8 shows the crientation of member A, F, in the glo-

L
bal xyz coordinate. The directional relationships between the state vectors in the local coardinates
%5 and in the global coordinates xyz at f, are shown in Fig. I9. Notice that the local £y7 axes

° are chasen such that the y axis is in the yz plane. To find the transformation matrices needed to
convert the state vectars from the local coordinates to thase of the global ones, first assume that the
xyz cocrdinates is rotated about the x-axis to a new x'’y 7’ coordinates such that now the new yaxis

° coincides with the local y axis. Notice that member A, F, is now in the x'y 'plane. Fig. I10 shows
the directional relations between the local and the rotated glchal state vectors at F; . Exarninmation
of Fig. I10 gives the following relatans:

[
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L

o
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4 = (cos 60°)(u) + (—cos 30°)(—w)

go
@ i = (P + () ) , (130)
® W = (cos 30%)(u) + (~cs 60°)(—w)
@ W= ()W) + (G 1s1)
o
& = (cos 60°)(8) + (~cos 307)(—0)
@ &= (7)) + (-9, 132)
|
8 = (—ccs 30°)(8) + (cos 60%)(—0)
o x b= (-%(e) + ()9 , (133)
[ ]
¢
.
L




e
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and M, = (cos 60°)(M,) + (s 30°)(T)
a M = (h0L) + (-2)E),
T = (~cos 3°)(M,) + (cos 607)(T)
Y T 1.2
o T'=(—5")M,) + T,
V, = (cos 60°)(V,) + (-cos 30°)(T)

-3

(@),

x v, = () +(
N’ = (=cs30°)(V,) + (cos 60°)(T)

-
x N = (SR +(HE)

Using egns. (I30) to (I33),

=
L g3 9 0 o0
() 2 : A
: 0 1 0 0 0 u
v 3 1 v
< —“A’ L 2 O 2 0 0 0 < "W' >
= \- .
S 00 0o L+ o 2|i°
¥ < < Y
L 5 Jr, 0 0 O g 1 (1) § I,
L 00 0 —0
and wsing egns. (I34) to (137),
T e ey e R Y

LY

(134)

(135)

(136)

(137)

(138)
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(139)

o
Sl
o

z-

[e=] —
Lit

o o © NIHONl(
Nl(ONlH (=T T =

[o=] — o
- o o (=] o=
I NlLS1
z. - » ~<) ~,

To obtain the relatiorships between the unrotated global state vectors and the local state vectors, the
x'y’z’ coardinates are rotated back to the ariginal xyz position. This can be dane using another set
of transformation matrices. Fig. I11 shows the relationship between the global state vectors and the :j-;I:

rotated state vectors. As befcre, examination of Fig. I110 gives -

° 1 0 o 0o 0 0 4
”n oVi-Lo o o N %
| Vio o o)y ]

° s 1o o o 1 o 0o |1e] (140) -
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(142)
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from which

Cambining eqrs. (139) and (141),
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1
Vi %
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Similarly, corsideration of junction A, gives,
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N | F
(145)

Eqns. (142) to (I45) can be rewritten as

dp, =Gidy, (146)
p?[_ = Géﬁ!{, (147)
dpg =Gida, (148)

Pax =Gubag (749)

where
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and where
[ 1 11 ’
2VE S = o 0 o
Vi oE %
1 1
=V V<$-—=5 0
vV 1 R
| 2 e |
Gz= 4 = ‘
1 1 1
0 0 0 2‘\/?; W -\-5 q
1 z_1 o
0 0o o —% 0 %— 7]
i '.",.:
33
Fram eqn. (I1), in the local £§7 coardinate, :'
e
-

R c. C N
{2}’1. = [C: Cj}{;}u (130)

Thus, from egn. (150),

d.FL =C1JAR +C2}'3Ax 51)
and pp, =Cadap +Copap (152)

Multiplying eqn. (I51) by C;*,
Pag = Cz—ldAp,_ -C;'C 1d‘.4, (1£3)

Sulstituting eqn. (I53) into egn. (152),

. - - % LN
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p, =CiCi'dr, + (Cy = CiCiC1)day (154)

X

L)
a e

Using eqns. (I53), (146), (148) and (149)

{‘.‘.‘A.“‘ -"‘- .

~ >
"y
N T

x =GiCi'Gidp, = GiC:C1G1day (1s5)

Using eqns. (154), (146), (148) and (145), 2
pr, =GiCCi'Gide, +G1(C3 —CiC7'C1)Gaday (Is6)
If the same procedure is carried out for members DpF,, Ap £, and Dr £, , and if for
the analysis of each member, taking the left end paint and the origin of the local coardinate and the E:f:'
direction along the length of the member as the local £ direction, with the y axis in the global yz

plane, the following relations are obtained.

g For member D F, , KR

o =GiCi\Gidy, =GiC7'C \Gidp, as7)
€ e, =GiC.C7'Gidp, +Gi(Cy = C.C7'C)Gdp, (158) -

where A
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V31 14
o o FFVIIV3E

and where ;.'
® !::.';
1 1 ] .
> ‘\/g \/§ - 0 0 0 :
WVIVEL o 0 :
. -
\%) 1
D 2 ©¢ =z 9 o 0
12 =0= N
1 1 -:_\.
0 o o VI L 5
1 2 1 3o
o 0 0 0 > \/;- ‘\/: 5
Vi 1
L 0 0 0 > 0 7
€ For reember AR E,,
Pap =GiCi'Gidy, ~GC7'C\G1da, (159)
€ .
Pe, =G3CC7'Gide, +G5 (Cs ~C.L7C)G1day (160) ]
R,
3
]




F-\a~‘—v‘-“.\ﬂy““ B AL Wittt e gt e o LN RO SN e e e A s il et ol Ak et el oug "

o -167-

¢
= ol

o N} (, o
(S
o o [=] N|H
w|
|
v e
o o = b<J
)

n= o ) o
w|
{
v o o o
w]

N'§1 © w o o o°

o
S
ol
S

and where

[=]

G; = G =

o o
w4 Wt
o o o o
s

N,v—t N,r—t

<
Wit

o

(o]
o
(oo
Nl

ror member DR E,,

Ppa =G, C1'G  dy, —G{C1'C\G1dp, 61)

pEL = GZ"Cdcz-lG ‘l"dEL + GZ"(CJ - CACZ-ICI)GB"de (162)

where
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o % % % 0 0 0
0 \/-g- —;1-3- 0 0 0
] N A %—\/%3 e
L T )
0 o o —’\5 \/%
® |00 0 "VEB:‘%\/BZ%\/%J
and where G;” = -G
()
Vi s 0 0 o
WIVIL o oo o
-?— 0 % 0 o 0
oo e WVEVIS
o 0o 0 3VEIVE 3
o o 0 —2—3- 0 %_—

Egms. (I55) to (162) give the relations between the induced forces at the end pants of
member AgFy,DzF,, ApE, and DrE, due to displacements at A, and F,, D and F,, Ax and
E,,Dy and E,, respectively. Keeping in mind that A, refers to a paint in main member I; D,
refers to a paint in main member III, £, refers to a paint in main member IV, and F, refers to a

paint in main member II, and introduding a set of matrices D, through Dy such that
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D, =G.;'G,

L

Dz = 'G;C{IC;G;'

D3 =G£C‘C2-IG;
®

D, =Gzl (Cl -C4C2-1C1)G:;

Ds =G:Cz_1G;
®

Dy = -G,C:C\G;
‘ D7 =G;C4CZ_IG;

Dy =G;(Cy ~C.L7'C1)G;
L . -

D9 =G4C2.IGL

Dy = -G,C;'C\Gy
. » -

D, =G;CLi'G,

Dy =G;(Cy =CL7'C1)Gy
o

D, =G, C;'G

Dy, = G, C;'C\Gy
v

Dis =G;CLi'Gy

and Dy =G, (Cy =C.LC35'C1)G5 , eqns. (I55) through (I64) can be expressed in matrix farm as

®
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\
P d
, =
[ 4, 0 0 0 0 0 0 0 0]fd ] o
° dy 0 0 0 0 0 0 0 0]|dy
dlll 0 0 0 O 0 0 0 0 d]”
dy 0 0 0 0 0 0 0 O Jd,,, (163) &
Pv =Dy 0 Dy, Duy+Dys 0 0 0 O\pw{ .
Pt 0 Ds D¢+Dy Dy 0 0 0 Offpn 't"
Pu D, Dy+D; Dy 0 0 0 0 Of]pu ;‘V'
. : Dr sz'*'Dm D1 0 D9 0 0 0 0’ Di J 4
1 \
' CR CL

where the subscripts C, and C, denote the left and right ends of the commecting

members which join the main members in a section of a periodic unit which resulss in tramsfer

matrix V;. Now, adding the contributions from members AzK,,IF,, Dz L, and G,E, wsing eqn. =
. (129), to that in eqn. (I63), transfer matrix V, can be cbtained. Notice that the addition of the ele- -

ments in the matrices in eqns. (I163) and (I29) is in effect adding the contributions fram the consti- g
»: : 4
tutive members which make up transfer matrix V,. Thus, :::-:
e

e oA
d, ¢ 0 0 0 o 0 0 ¢4 %

du 0 Ci 0 0 0 0C; € 04 dy’ =

d“l‘ 0 0 C1 O O C:: O O ¢ ‘d“/’ ".

!d,,,’ ={0 0 0 C; c; 0 0 0 jdy.

® Prv | Dy 0 Dy . Dp+Dis+Cy Co 0 0 0 ‘ P! ol

Put} 0 D, D¢+D1y+C, %) 0 C, 0 07 puy
[ Pn } Dy ' D;3+D4+C, Dy 0 0 0 C, 0 o Pu
p LD;*‘D;Q"‘C:; Dl 0 Dg 0 0 0 Cd{. Lpz i
R L

¢ .
Zrom which ‘.~.

=

€

Fa
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[ C, 0 0 0 0 0 O Cz'T

0 C, 0 0 0 0C, O

0 0 C, 0 0c;, 00

0 0 0 C: c, 0 0 O

i=1 b, 0 Dy  Du+Dis4CiCi 0 0 0
0 Dy Dy+D,+C; Dy, 0C, 0 0

D, Dy+D7+C; Dy 0 0 0C, 0
Dz+D1°+C; D, 0 Dy 0 0 0 C,

(164)

where the subscripts R and L denote the right and left ends of the members in a section of a

periodic structure which results in transfer matrix V.

TRANSFER MATRIX V,

Fig. 112 shows a substructure which is representative of the transfer matrix which is
representative of transfer matrix V5. The derivation of the transfer matrix V, is similar to that of
the transfer matrix V,. Referring to Fig. I12, members Kz B, ,FpJ,LeC, and EpH, which are
pars of main members I, IO, I and IV, respectively, are comsidered first. Members
FpB,,FxC,,ExB, and E,C, are then comsidered. The trarsfer matrix V, is then obtained by
adding the contributions of all eight members, as was done for trarsfer matrix V,. Since the pro-

cedure is similar to that of the previous section, it will not be repeated hers. Transfer matrix V is

cotained as
[ , h
C; 0 0 0 0 0 0 C;
0 C; 0 0 0 0 C; 0
0 0 C; 0 0 C; 00
0 0 0 C, cC; 0 0 0
Vy = E, 0 Eyy  Ep+E+CCi 0 9 0
0 Eq Eq,+Es+C, E, O0C. 0 0
E, Ez*‘Eo""C;, Es 0 0 0 C4 0
LE;*EH-"Ci z, 0 E. 0 0 0 C;
J (165)
where
""""""" e e e N T T U N R e

ety
.’ fn
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H. E; =H;C2-1H11
Ez = —H"Cz.]'ClH;
® E, =HCCi'H;
E, =H3;(C; —C.LC7'C)H,
° Es = HICT'H;
Eé = -—H{C{‘CJI;
@ . .
E, =H:C4C2-1H1
Ey =H3;(C; —C.Ci'CH,Y"
o
E9 =H4"C2-1H1"'
Ey = -H/C;'C\Hy
o
E,, =H;C.C{'H{
E; =H;(Cy -CLi'CHY
L
Ey =HCOHT
E =-HC;'C\Hy
€
Eis =H; C.LTH
° E. =H; (Cy ~CLC'CHHY
and H, through H" are transformation matrices such that
o
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and all cther variables are defined in the previous section cn the transfer matrix V.
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LENGTH OF EACH BAR =@

MAIN MEMBER I¥

- AN/
AN/

¢ MAIN MEMBER II

MAIN MEMBER I

MAIN MEMBER I

Figq. I4 A tetrahedral truss.
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¢ Vz, Mz, 8, w

A
Vy, My, =y, -»

L
<% 1 >
-u,~¢, T,N u, ¢1T)N
®
Vo My, Vz, M;,8,w
®

Fig. I2 Sign convention for the forces ond
displacements in a connecting bdar.




F™~7 T b L AN AR i Sar et RO i i A s SR M SAS S SO AR-0l - are )
® -178-
o
LENGTH OF EACH BAR=1
o
E
. DU SNPE SN
2 ?-—lg‘__ MAIN MEMBER I¥
MAIN MEMBER TIT
®
MAIN MEMBER T
® X
y MAIN MEMBER I
o
¢
€
®
Fig. I3 A periodic unit of the tetrahedral truss.
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C
q J\ J\o J - J
a4 AV Y4 "V
TRANSFER TRANSFER TRANSFER TRANSFER
MATRIX MATRIX MATRIX MATRIX
V1 Vz V3 V.,

Sectioning of a periodic unit into constituent parts
comprising the transfsr matrices.
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Fig. I8 Forces at locations A and D.
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Fig. I7  Tatrahedral truss section for matrix Vs.
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R

Fig. I8 Orientation of mamber AgF_ in the
qlobal xyz coordinates.
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: and unrotated global state vectors at
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Fig. 112 Tetrahedral truss section for matrix Vsx.
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APPENDIX J

LIST OF COMPUTER PROGRAM

This section gives a Basic language computer program, named PROGI, BAS, which
calculate the frequency respanse functions for an elastic rod. Fig. J1 shows a schematic of the rod
and the symbals for various locations uwsed. PROG1BAS clculates the frequency respomse
functions, according to discrete frequency steps, for locatios A,B,C, D, E,, Ex,F and G, where
E, and E, are paints just left of E and just right of E, respectively. The values of the frequency
response functions are stored, accarding to frequency, onto files, one file for each lecation. The
letter before the decimal paint in each file name denctes the respanse location and the ward wsed
after the decimal point denotes the type of respanse which is being stored. If a file name ends with
the word one, the resporse of the longitudinal displacement is stored whereas, if a fiile name ends

with the word two, the respense of the axial force is stored.
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PROG1 BAS

on error goto 84
o defdbl t,e,w,m,a,b,1l
defint 1,
option base 1
dim t(2,2)
read e,m,l,a
data 10.8e6,2.6e-4,10,9.75e=2
] input "Enter the starting point : ",k1 : print
input "Emrter the terminating point : ",k3 : print
10 for k2=k1 to k3 step 10
w=k2*100
for i=1 to 2
for j=1 to 2
® t(ivj)=o
next jJ
next 1§
1=1#%2
gosud 1000
b1=t(2,2)
® 1=1/2%6
gosub 1000
al=t(2,2)
open "a", 1, "freqa.one"
write #1, w,-b1/a1
close 1
e 1=1/6
gosub 1000
open "a", 1, "freqb.one"
write #1, w,-b1/a1*t(1,2)
close 1
open "a", 1, "fregb.two"
o write #1, w,-b1/a1*t(2,2)
close 1
1=1%2
gosub 10C0O
open "a", 1, "freqc.one"
write #1, w,=-bl/a1%t(1,2)

¢ close 1
oren "a", 1, "freqc.two"
write #1, w,-b1/a1*t(2,2)
close 1
1=1/2%3
< gosub 1000
open "a", 1, "fregqd.one"
write £1, w,=-b1/a1*t(1,2)
close 1
open "a", 1, "freqd.two"
write #1, w,-b1/at1*t(2,2)
) close 1
1=1/3%4
gosub 10.0C
@
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open "a", 1, "freqel.one" %
write #1, w,-b1/a1*t(1,2) <
close 1
open "a", 1, "freqel.two" NS
write #1, w,-b1/at1*t(2,2) M
close 1 :}
b2=-t(1,2) N
1=1/4%6 R
gosub 1000 -
© a2=t(1,1)
open "a", 1, "freqg.one" ;a
write #1, w,t2/a2 oy
close 1 : o
1=1/6 -;
gosub 1000
open "a", 1, "freqf.one" NG
write #1, w,b2/a2#t(1,1) -
close 1 S
open "a", 1, "freqf.two" o
write #1, w,-b2/a2+*t(2,1) DN
close 1
l=l*2 :J::
gosudb 1000 i“
open "a", 1, "freqer.one" K:
write #1, w,b2/a2%t(1,1) SN
close 1 L
open a", 1, "freger.two" :
write #1, w,-b2/az2*t(2,1) o]
close 1 -
1=1/2 t.:-:.
next k2 e
goto 86 o
84 k1=k2+10 i
resume 10 ;E
8& end B
1000 th=l*w*sqr(m*a/e) o
t(1,1)=cos(th)
t(1,2)=1*sin(th)/e/a/th 2
t(2,1 )=-m*l*w*w*sin(th)/ th _
t(ZvA/~t 1,1)
retur -
2
M
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)

Fig. J1 An elastic rod loaded with a sinusoidal force at E.
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APPENDIX K

SOME PROPERTIES OF TRANSFER MATRICES

CROSS-SYMMETRY
If a segment of an element is symmetric about a plane at its midlength as shown

schematically in Fig. K1, then it is always possible to obtain a cross-symmetric transfer matrix,
which represents the element, by a suitable ordering and sign convention of the components of the
state vector [7]. The transfer matrix is cross-symmetric in that its elements are symmetric about its
cross-diagonal. Thus, if the elements in a cross-symmetric transfer matrix T are ¢, where
i=12,.n for the rows and j=12,..n for the columns and » is the dimensian of the transfer matrix

(trarsfer matrices are square matrices), then

Ly Sthaaei a1+, (X1)

For example, the transfer matrix for an elastic rod can be cbserved to be cross-
symmetric using the state vector as defined. Similarly, it can be shown that the transfer matrix for
a Timoshenko beam is cross-symmetric with a suitable ordering of the components of the state vec-

jto o8
INVERSION

For a given element, there exists two pessible transfer matrices to relate eaither (1) the
state vectar at the right end to the state vector at the :eft end, x (2) the state vector at the left end
to the state vector at the right end. Let T be a tramsfer matrix which relates the state vector at the

right end to the state vector at the left end of an elercent. Thus,
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where zp and z; denote the state vectar at the right end and the state vector at the left end of the

element, respectively. Eqn. (K2) can be rearranged to yield

ZL =T-1ZR (IQ)

Eqn. (K3) shows that the state vector at the left end is related to the state vector at the right end by

the inverse of the transfer matrix T .

For example, the transfer matrix relating the state vectar at the left end to the right end
of an elastic rod is the inverse of the transfer matrix relating the state vectar at the right end to the

left end of the same rod.

It may also be shown that transfer matrices are non-singular and that the inverse of a

transfer matrix is equal to its adjaint [7].
VALUE OF DETERMINANT
It can be shown that the determinant of any transfer matrix is equal to unity [7].

For example, the determinant of the transfer matrix for the longjtudinal vibration of an

elastic rod (or the inverse of the transfer matrix) can be shown to be unity algebraically.

Because digital computations are necessary in applying the transfer matrix method, the
nurzerical evajuation of the determinant of the transfer matrix provides an opportunity to determine
the accuracy of computer-aided numerical results. Table K1 shows the listing of a Basic language
coraputer program named DET1 BAS, which calculates the determinant of the transfer matrix for
the longitudinal vibration of an elastic rod at various frequencies. Table K2 shows the listing of a
Basic language computer program mamed DET2.BAS, which calculates the determinant of the

tramsfer matrix for the flexural vibration of a Tiroshenko beam at various frequencies. The
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programs are evaluated wing double precision on all variables and aalculations; that is, all variables
and calculations are carried out 1o 16 significant figures. Table K3 shows the computer values of
the determinant for the rod and the Timashenko beam at various frequencies. From Table K3, it is
observed that the determinant of the rod is always calculated correctly as unity. However, it is
observed that the determinant of the Timcshenko beam is calculated to be unity only at low fre-

quencies such as less than approximately 6000 rad/sec (approximately 1000 Hz).
EIGENVALUES

It can be shown that the eigenvalues (that is, the natural frequencies) corresponding to
vibratiors of a structure evaluated using the transfer matrices relating (1) the state vectar at the
right end to the state vector at the left end, and (2) the state vectar at the left end to the state vec-
tor at the right end, are identical {7].

For example, the natural frequencies of longitudinal vibration in an elastic rod shown in
Fig. K2 can be evaluated using the transfer matrices for the rod. As shown in Fig. K2, the rod is
clamped at the left end and is free at the right end. The state vectar of the rod at the right end is

related to the state vector at the left end by a transfer matrix as

£ sin @

{u} _ cos 8 EA 8 {u} <4
.v,"_pwsi:;e s |W (X4)

where u is the longitudinal displacement N is the axial force and the subscnipts R and L denote the

right end and the left end of the rod, respectively. Imposing the boundary conditions of

VAN

g ‘

AL
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L u, =0 ,at x =0 (X5)

and Ny =0 ,at x =¢ (K6)
L into eqn. (K4) gives

| mo Lo
u EA @ 0
r 0y = |_ppsn® e |Wh (X7)
0
Eqn. (K7) can be rewritten as the following two equatiors:

®
¢ sin 6
“=gx g M x8)
e
and 0 = cos GN, (X9)
Fram eqn. (K9) nontrivial solutions require that
®
s §=0 (X10)
® x 8= ("’2'”' for =12, (K11)
since 8 = fm\/-% , (X12)
@
substitution of eqn. (K12) into egn. (K11) gives
e
o
‘ ..:-..
LM - \ - ‘\
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(mv-g- =Qn—;_1.)1 fxr n=1,2 (K13)
From eqn. (K13), the natura) frequencies for longitudinal vibration of an elastic rod is
@ = -(2—’%111\/% for n=12,. (K14)

Similarly, the state vector of the rod at the left end is related to the state vector at the

right end by a transfer matrix as

_tsne
{u} _ o8 —Fae {u}
0 Pl IPPY: XSS ) (K15)

)

Imposing the boundary conditions in eqns. (KS) and (K6) gives

£ sin @

{o} | =0 Ee {} e

N wgu}s_u;.g s 0 0)x )
Egn. (K16) can be rewritten as the following two equations

0 =c0s Quy (Kl7)

ad N, =wa:w;6"x (K18)

From eqn. (X17), nontrivial salytions require that
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s 8 =0 (X19) o

Since eqns. (K10) and (X19) are identical, the same natural frequencies as given in eqn. (K14) will A
result. Thus, it is demonstrated that the same eigenvalues (or matural frequencies) are obtained :‘,:
r using the transfer matrices relating either (1) the state vector at the right end to the state vectar at M

the left end, or (2) the state vector at the left end to the state vectar at the right end.
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Table K1. Computer listing of program DET1 BAS v

4

..

.l. "’.'.}.
» .

a a'w

kY

K

defint i,3j

® detdbl a

option base 1

dim a(2,2)

read e,ar,to,1l

data 10e?.1.84e-1,3e¢-4,9 .75

input "“"The frequency of vibration is : “;w : print
® lprint "The frequency of vibration is : “;w : lprint
for i=1 to 2

for =1 to 2

s
~J

¢

o0 |17

a(i,jr=0
next j
next i
L4 gosub 1000
det=a(1,1)%*a(2,2)-a(1,2)%a(2,1)
Iprint “The determinant of transfer matrix is “;det : lprint
end

1000 th=ltwrsqr(ro/e)
® a{l,1)=cos(th)
a(2,2)=a(1,1)
2a(1,2)=l/e/fac/thrsin(th)
a{2,1)z~e%ar®th/1xgin(th)

return
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Table K2. Camputer listing of program DET2 BAS

defint i{,j,m,n,k
defdbl a,b,c,e,g,r
option base 1
dim a(12,12),b(12,12)
def fnesh(f)=(exp(f)+sexp(=f))/2
def fnsnh(h)=(exp(h)~-exp(=-h))/2
read e,g,ar,bi,ro,r,1,ga
data 10e7,3.84e7,1.84e-1,2.85€e-3,3e-4,1.242-1,9.75,5.92e6
input "Enter the frequency of vibration : ";w
lprint "The frequency of vibration is = ";w
gosub 2000
for 4i=1 to 12
for j=1 to 12
‘(i’j)‘o
b(i,j)80
next j
next i
gosub 3000
for {i=1 to 4
for j=1 to 4
b(i'j)’a(1*4’j*4)
next j
next 1
lprint "The beam transfer matrix g te-we "
for i=1 to 4
lprint b(iv1)3b(102)3b(1v3);b(114)
next 4

«

MR

ok ¥4

5ﬁjlgg¥¥&~ﬁ

i A B e g

e 1 S ey
HF T W RN W WY

..
u
e
E
.
o
L
-
<.
\-
vt

d1=(b(1,1)*b(2,2)=b(1,2)*b(2,1))*(b(4,4)*d(3,3)-b(3,4)*b(4,3))
d2=(b(1,1)*b(2,3)=-t(2,1)*b(1,3))*(b(3,2)*b(4,4)=-b(4,2)*b(3,4))
d3=(b(1,1)*b(2,4)-b(2,1)*b(1,4))*(b(3,2)*b(4,3)=-b(4,2)*b(3,3))
d4=(b(1,2)*b(2,3)=-b(2,2)*b(1,3))*(b(3,1)*b(4,4)-b(4,1)*b(3,4))
d5=<b(1.2)'b(2.4)-b(2.2)*b(1.4))’( (3 1)*b(4,3)-b(s,1)*1(3,3))
d6=(b(1,3)*b(2,4)=-b(2,3)*b(1,4))*(b(3,1)*b(4,2)-b(4,1)*b(3,2))
det=d1-d2+d3+d4-25+d6

lprint "The determinant ¢f the beax transfer matrix is = ";det

end

200C su=ro/er
al=(1%2)/e/b4
b4=su*(w-2)*(1%°4)/e/bi
s=su*(w"2)%(1°2)/ga
te=sut(r“2)*(w"2)*(1°2)/e/bt
thz1l*w*gqr(ro/e)
l1=gqr(sqr(b4+(((s-t)"2)/4))-(sst)/2)
12=8qr(sqr(bd«+(((s=-t)"2)/4))+(Ber)/2)
10-1/(%11-2)¢\12 2))
cO=10%((12°2)*fnesn(11)-(11"2)*cos(1z,)
c1210*((12°2)/11*fnsnh(11)«e(11°2)/12%8n( 12
c2=z1C*(fnesh{1l1)=-cos(12))
c3=z10*{(1/11*%fnenh(11)-1/12*sin(12))
return
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Table K2. Cont. Camputer listing of program DET2 BAS

rem subroutine to form beam transfer matrix P
3000 for is1 to 12
| for Jj=1 to 12
’ ‘(193)'0
next J
PS next 4
a(1,1)=cos(th)
a(4,4)=a(1,1)
‘(919)“(101)
a(12,12)=a(1,4)
a(1,12)=1*sin(th)/(e*ar*th)
. .(4’9)=‘(1'12)
a(2,2)=c0=-8*%c2
8(5.5)=5(2o2)
a(2,3)=1%(c1~(5+t)*c3)
‘(576)“(2v3)
a(2,10)=al*c2
® a(3,11)=a(2,10)
a(5,7)=a(2,10)
a{6,8)=a{2,10)
a(2,11)=al*1/bs*(=8%c1+(bs+8"2)*c3)
a(SDB)‘a(2'11)
a(3,2)=b4/1%*c3
) a(6,5)=a(3,2)
a(3,3)=c0-t*c2
a(6,6)=a(3,3)
a(3,10)=al/1%(c1-t%*c3)
2(6,7)=a(3,10)
a(7,5)=b4%*c2/al
e a(8,6)=a(7,5)
‘(1002)'3(705)
5(1103)‘3(795)
a(7,6)=1/al*(~t¥#c1+(b4+t"2)%c3)
3(10.3)35(716)
a(7,7)=cO=-t*c2
® a(10,10)=a(7,7)
a(7,8)=1%*(c1=-(s+t)*c3)
a(10,11)=a(7,8)
a(8,5)=b4*(c1-8%*c3)/al/l
a(11,2)=a(8,5)
3(807)'b4’c3/1
e a(11,10)=a(8,7)
a(8,8)=c0-8*c2
a(11,11)=a(8,8)
a(9,4)==8u*l*(w"2)*sin(th)/th
a(12,1)=8a(9,4)

return
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Table K3. Carputed Values of the Determimant of Transfer Matrices far Unifarm Rod and

Timoshenko Beam for Various Frequencies of Vibration®

Computed Values of the Determimant of

Transfer Matrix for
Frequency
(rad/sec) | Longitudinal Vibration Flexural Vibration
of Uniform Rod o Uniform Timoshenko
Beam
10 1 1

100 1 1
1,000 1 099999
10000 1 £0.0625

100,000 1 180144 x10'8
1,000,000 1 ..

* Fx_te ?1 dasic mocuis is 7.46%10'° P2 (108x10° @i), crossectional_area is 6.04X107% m?
* )

(9375x15% in*} mass dersity is 72 kg/m> 2.6 X107 {bm/in>), and length is 243 X153 m (9.75 in).

For the Timeshenko beam, eastic modulus is 7.46%10!° Pa (10.8X‘19‘° 5i), shear modulus is 2.75x10' pa
BOXI0P i), cross sectional greais 604>x107° m? é9375>(310' in"). second morent of area inemtia is
455%10°0m* (1098x107%in*), mass density is 72 kg/m> 2.6X107* Ibm/in’), rdis o praton is

271x107> m (10838 X107 in ), and lengtn s 243%10™ m (975 in).
*¢ Value exceeded the capacity of the compuser
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Fig. K1 Segment of an element represented by
a cross-symmetric transfer matrix. ~
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N 7 E, A, p
=
. 7

Fig. K2 An elastic rod constrained at on2 and
and free at the other end.
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APPENDIX L
NON-DIMENSIONALIZED FORMS FOR TRANSFER MATRICES OF A

3-BAY PLANAR LATTICE STRUCTURE

The non-dimersicnalized formes for the two tramsfer matrices X, and X, for the analysis
of wawe propagation and vibration in a 3-bay planar structure are derived in this 2~pendix.
Fram egn. (39) and eqn. (40), the two transfer matricss X, and X, corrssponcing @ a

state vector Z such that

where

M
crd where p = 3V [
N

A whers Ue subsenpts dencte Ue rmemiber nwmbess, are Ziven oy
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c,0 0 C; e
0 CiC: 0 -
Xl = 0 c3 C‘ 0 (1-2) '.\(
C:0 0 Cs 3
\ N
e
- ’.\
@ ! 0 00 N
o [0 1 00 -
X1 = 16.€'6:  -G.L5'C.Gs 10 (L3) -3
G.CL£:'G1 G3(C3—CL1'C1)Gs 01 .
o I is the identity matrix, 0 is the null matrix, C,, C,, C and C, are 3x3 submatrices and G,, G3, G,
and G, are transformation matrices such that
: =
. cos 0 0 0 )
c,={0 co—xy €[c;—(o1)es)
0
g ¢ €o—TC, -
i ¢ .
[ b
r £ sind| -
0 —_ -
Oe, p EA 8
C: = |57 < BES [-oc + (B'+d)c)] g v
¢ -é]— (c1—rc3) £ ¢ .
L EJ J
‘ 3 1
g'ES EJ ‘ .
0 2 2 7 [, + (B+cy
EJ 3EJ
C, = 0 %" [ci—ocy] £ €2
sind o 0
€ f*“e"’z 9
- __
Co—T ¢
° : €ley=(o+rics] 0 .
C4 = EC; Cp~0TCs 0 :‘:
o ¢ L%
0 0 s 8 -
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G,

ol o
OO —
- QO O

G;

where

Cand

A
N =

1
2

-
-

Lo =

¢y = MM\ cosh Ny + N cos Ng)

-
P

L
g
[7,]
e F O
+ 8 \m_k
< ] I
§ < m_
¥ -] <
_\N. m ‘@
7 T <
0 Il 0
ey vy oy

where
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that
_a'
it
i = —?—r
M2
A= %az
From thc_ elastic theary of isotropic materials,
=_£E _
G 2(1+v)
where vis Paisson’s ratio. Now let
£a?
=
o E
ard
&1=-£
a

14)

15)

(1L6)

an

(13)

L9

where 1 and £a are both non-dimemsionalized lumped parameters. Using Equation (14) through

Equation (L9), the variables 8, o, 7, and B' wsed in the tramsfer practices X; and X; can be

rewritten as

T
e
* . P

A ALY

TRV,
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o
=0 (L10)
o
=12 2
o= -3-(1 +)0 (L11)
v =2 (L12)
L) g' = 12Q0%¢a? (L13)
Now replace the state vectar Z given in Equation (L1) by a new non-dimensionalized
state vectar Z such that
o
L14)
L
where
o a
£
- = - lv—
4=1"%
\/
o
and where
(3¢ )
L EJ
D = 4 .‘iéz_
N
| Ea* )
[ 3
Equations (12) and (L3) can now be rewritten as
o
o

. . . N -
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e

o O MO

'S

(")

(=) Ql ﬁlO
»~

O o 0O

-

1 0
(] 1
G iG, -G.C;'C\G,

0 B‘C 3

¢y — TC3

_G;CECT{‘G: G:(m '6463-161)03

.cosﬂ 0 0

0 co-or; [cy=(E+1)cy)
Co — TC3

0
0 1
[ £ "BT[a'z +(B‘ +°2)c3]

c2

0 B'cy
0 B'(ci—oxs) B,
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[=rer + (B'+7)cy]

Notice that X; and X, in Equations (L15) and (L16) correspend to a non-

dimersionalized state vector Z and the elements in the two matrices are functions of non-

dirensionalized lumped parameters {a and 2.
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